精英家教网 > 初中数学 > 题目详情
精英家教网已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)求反比例函数的解析式和直线y=ax+b解析式;
﹙2﹚求△AOC的面积;
(3)在坐标轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.
分析:(1)根据△AOB的面积求出A点的坐标,然后根据A点坐标确定出反比例函数的解析式.进而求得C点的坐标.根据C、A的坐标即可求得直线AC的解析式;
(2)将△AOC分成△AOM和COM两部分进行求解.先根据直线AC的解析式求出M的坐标,即可得出OM的长,然后根据A、C的纵坐标即可求出△AOC的面积;
(3)以O为圆心,OA为半径,交坐标轴于四点,这四点均符合点P的要求.以A为圆心,AO为半径,交坐标轴于两点,作AO的垂直平分线,交坐标轴于两点,因此共有8个符合要求的点.
解答:解:
(1)在Rt△OAB中,OB=2,S△OAB=3,
∴AB=3,
即A(-2,3),
∴反比例函数的解析式为y=-
6
x

∴C(4,-
3
2
),
设直线AC的解析式为y=kx+b,则有:
-2k+b=3
4k+b=-
3
2
精英家教网
解得:
k=-
3
4
b=
3
2

∴y=-
3
4
x+
3
2


(2)根据(1)y=-
3
4
x+
3
2

得M(2,0),
∴OM=2,
∴S△AOC=S△AOM+S△OCM=
1
2
×2×3+
1
2
×2×
3
2
=4.5;

(3)存在.
∵A(-2,3),
∴OA=
13

当OA=OP时,P1(0,
13
)、P2
13
,0)、P3(0,-
13
)、P4-
13
,0);
当OA=AP时,P5(0,6)、P6(-4,0);
当AP=OP时,P7(0,
13
6
)、P8(-
13
4
,0).
点评:本题考查反比例函数和一次函数解析式的确定、图形的面积求法、等腰三角形的判定等知识及综合应用知识、解决问题的能力.要注意(3)在不确定等腰三角形的腰和底的情况下要考虑到所有的情况,不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m)AB⊥x轴于B,Rt△AOB精英家教网面积为3,若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
),
(1)反比例函数的解析式为
 
,m=
 
,n=
 

(2)求直线y=ax+b的解析式;
(3)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点A(-2,3),求这个反比例函数的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
的图象经过点(3,-4),则这个函数的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
kx
(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且有x1<x2<0,则y1和y2的大小关系是
y1<y2
y1<y2

查看答案和解析>>

同步练习册答案