精英家教网 > 初中数学 > 题目详情
对于二次函数C:y=x2-4x+6和一次函数l:y=-x+6,把y=t(x2-4x+6)+(1-t)(-x+6)称为这两个函数的“再生二次函数”,其中,t是不为零的实数,其图象记作抛物线E.设二次函数C和一次函数l的两个交点为A(x1,y1),B(x2,y2)(其中x1<x2).
(1)求点A,B的坐标,并判断这两个点是否在抛物线E上;
(2)二次函数y=-x2+5x+5是二次函数y=x2-4x+6和一次函数y=-x+6的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;
(3)若抛物线E与坐标轴的三个交点围成的三角形面积为6,求抛物线E的解析式.

【答案】分析:(1)联立二次函数C与一次函数l的解析式,消掉y得到关于x的一元二次方程,解方程再求出相应的y的值,即可得到A、B的坐标,然后把点A、B的坐标代入抛物线E的解析式进行验证即可;
(2)根据抛物线E必过定点A、B,代入二次函数y=-x2+5x+5进行验证即可;
(3)设抛物线E截x轴的线段长为a,先利用三角形的面积求出a的长,再根据点B的坐标求出与x轴的另一交点的坐标,然后代入抛物线求解即可得到t的值,从而得解.
解答:解:(1)联立
消掉y得,x2-4x+6=-x+6,
整理得,x2-6x=0,
解得x1=0,x2=6,
∴y1=6,y2=-6+6=0,
∴点A(0,6),B(6,0),
当x=0时,y=t(×02-4×0+6)+(1-t)(-0+6)=6t+6-6t=6,
当x=6时,y=t(×62-4×6+6)+(1-t)(-6+6)=0,
∴点A、B在抛物线E上;

(2)∵抛物线E一定经过点A、B,
而对于二次函数y=-x2+5x+5,当x=0时,y=5≠6,
∴二次函数y=-x2+5x+5不是二次函数y=x2-4x+6和一次函数y=-x+6的一个“再生二次函数”;

(3)由(1)得,抛物线E与x轴的一个交点为B,与y轴的交点为A,
设抛物线E截x轴的线段长为a,则S=a×6=6,
解得a=2,
所以,与x轴的另一个交点为(4,0)或(8,0),
点(4,0)代入抛物线E得,y=t(×42-4×4+6)+(1-t)(-4+6)=0,
解得t=
此时y=x2-4x+6)+(1-)(-x+6)=x2-x+6,
点(8,0)代入抛物线E得,y=t(×82-4×8+6)+(1-t)(-8+6)=0,
解得t=
此时,y=x2-4x+6)+(1-)(-x+6)=x2-x+6.
点评:本题考查了二次函数综合题型,主要利用了联立两函数解析式求交点坐标,验证点是否在二次函数图象上,三角形的面积,二次函数图象上点的坐标特征,读懂题目信息,理解“再生二次函数”的定义是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

对于二次函数y=3x2,y=-3x2和y=
1
3
x2,下列说法中正确的是(  )
A、开口都向上,且都关于y轴对称
B、开口都向上,且都关于x轴对称
C、顶点都是原点,且都关于y轴对称
D、顶点都是原点,且都关于x轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道,对于二次函数y=a(x+m)2+k的图象,可由函数y=ax2的图象进行向左或向右平移一次、再向上或向下移一次平移得到,我们称函数y=ax2为“基本函数”,而称由它平移得到的二次函数y=a(x+m)2+k为“基本函数”y=ax2的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离
m2+k2
称为朋友距离.
由此,我们所学的函数:二次函数y=ax2,函数y=kx和反比例函数y=
k
x
都可以作为“基本函数”,并进行向左或向右平移一次、再向上或向下平移一次得到相应的“朋友函数”.
如一次函数y=2x-5是基本函数y=2x的朋友函数,由y=2x-5=2(x-1)-3朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离=
12+32
=
10

(1)探究一:小明同学经过思考后,为函数y=2x-5又找到了一条朋友路径为由基本函数y=2x先向
 
,再向下平移7单位,相应的朋友距离为
 

(2)探究二:已知函数y=x2-6x+5,求它的基本函数,朋友路径,和相应的朋友距离.
(3)探究三:为函数y=
3x+4
x+1
和它的基本函数y=
1
x
,找到朋友路径,并求相应的朋友距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

对于二次函数y=ax2+bx+c(a≠0),如果当x取任意整数时,函数值y都是整数,此时称该点精英家教网(x,y)为整点,该函数的图象为整点抛物线(例如:y=x2+2x+2).
(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的解析式
 
(不必证明);
(2)请直接写出整点抛物线y=x2+2x+2与直线y=4围成的阴影图形中(不包括边界)所含的整点个数有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•松北区二模)对于二次函数y=(x+1)2-3,下列说法正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(2,0)和抛物线E上的点B(-1,n),请完成:
(1)当t=2时,求抛物线y=t(x2-3x+2)+(1-t)(-2x+4)的顶点坐标.
(2)判断点A是否在抛物线E上,并求出n的值.
(3)通过(2)演算可知,对于t取任何不为零的实数,抛物线E总过定点,写出定点坐标.
(4)二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.

查看答案和解析>>

同步练习册答案