【题目】对于平面直角坐标系
中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作 d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.
![]()
![]()
(1)当⊙O的半径为2时,
①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直线
与⊙O互为“可及图形”,求b的取值范围;
(2)⊙G的圆心G在
轴上,半径为1,直线
与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.
【答案】(1)① 1,3;②
;(2)
,
.
【解析】
(1) ①根据图形M,N间的“近距离”的定义结合已知条件求解即可.
②根据可及图形的定义作出符合题意的图形,结合图形作答即可;
(2)分两种情况进行讨论即可.
(1)① 如图:![]()
根据近距离的定义可知:d(A,⊙O)=AC=2-1=1.
过点B作BE⊥x轴于点E,则
OB=
=5
∴d(B,⊙O)=OB-OD=5-2=3.
故答案为1,3.
② ∵由题意可知直线
与⊙O互为“可及图形”,⊙O的半径为2,
∴
.
∴
.
∴
.
![]()
(2)①当⊙G与边OD是可及图形时,d(O,⊙G)=OG-1,
∴
即-1≤m-1≤1
解得:
.
![]()
②当⊙G与边CD是可及图形时,如图,过点G作GE⊥CD于E,
![]()
d(E,⊙G)=EG-1,
由近距离的定义可知d(E,⊙G)的最大值为1,
∴此时EG=2,
∵∠GCE=45°,
∴GC=2
.
∵OC=5,
∴OG=5-2
.
根据对称性,OG的最大值为5+2
.
∴![]()
综上所述,m的取值范围为:
或
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D为AC中点,点E在BD延长线上,且BD:DE=3:5,连接CE,tan∠BAC=
,CB=
,则线段EC长为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,AC=BC,∠ACB=90°,点P为AB上一点(异于A、B),BD⊥直线CP于D,AE⊥直线CP于E,点F为AB的中点,连接DF.
![]()
(1)可以把△ACE绕点F逆时针旋转 度(度数不超过180°)和△ 重合,则∠FDE= °.
(2)取CE的中点G,连接AD、FG,求证:AD=2FG.
(3)如图2,AB=8,等腰直角△MNH的斜边NH的中点也为点F,直线AM和直线CH交于点Q,连接BQ,当△MNH绕点F旋转一周时,请直接写出BQ长的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.
![]()
请你根据统计图解答下列问题:
(1)参加比赛的学生共有____名;
(2)在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;
(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果经销商到水果种植基地采购葡萄,经销商一次性采购葡萄的采购单价
(元/千克)与采购量
(千克)之间的函数关系图象如图中折线
所示(不包括端点
).
![]()
(1)当
时,写出
与
之间的函数关系式;
(2)葡萄的种植成本为8元/千克,某经销商一次性采购葡萄的采购量不超过1000千克,当采购量是多少时,水果种植基地获利最大,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
与双曲线
交于点A(2,a).
![]()
(1)求
与
的值;
(2)画出双曲线
的示意图;
(3)设点
是双曲线
上一点(
与
不重合),直线
与
轴交于点
,当
时,结合图象,直接写出
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为( )
(1)DC=3OG;(2)OG=
BC;(3)△OGE是等边三角形;(4)
.
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣
与y轴交于点C,与x轴交于点A(﹣1,0),B(3,0).
![]()
(1)求这个抛物线的解析式;
(2)将△AOC以每秒一个单位的速度沿x轴向右平移,平移时间为t秒,平移后的△A′O′C′与△BOC重叠部分的面积为S,A与B重合时停止平移,求S与t的函数关系式;
(3)点P在x轴上,连接CP,点B关于直线CP的对称点为B′,若点B′落在这个抛物线的对称轴上,请直接写出所有符合条件的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com