精英家教网 > 初中数学 > 题目详情

勾股定理:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有________.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,按要求回答问题.
(1)观察下面两块三角尺,它们有一个共同的性质:∠A=2∠B,我们由此出发来进行思考.
在图(1)中作斜边上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=
b
2
,BD=c-
b
2
,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.对于图(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一个内角等于另一个内角的2倍,我们称这样的三角形为倍角三角形,两块三角尺都是特殊的倍角三角形,对于任意倍角三角形,上面的结论仍然成立吗?我们暂时把设想作为一种猜测:
如图(3),在△ABC中,若∠CAB=2∠ABC,则a2-b2=bc.
在上述由三角尺的性质到“猜测”这一认识过程中,用到了下列四种数学思想方法中的哪一种选出一个正确的并将其序号填在括号内(  )
①分类的思想方法②转化的思想方法③由特殊到一般的思想方法④精英家教网数形结合的思想方法
(2)这个猜测是否正确,请证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

阅读下列材料,按要求解答问题。

1)观察下面两块三角尺,它们有一个共同的性质:∠A2B,我们由此出发来进

行思考。

在图(1)中,作斜边AB上的高CD,由于∠B30°,可知c2b,于是AD

BDc。由于△CDB∽△ACB,可知,即a2BD

同理b2c·AD。于是a2b2cBDAD)=c[(c]=ccb

c2bb

bc。对于图(2),由勾股定理有a2b2c2,由于bc,故有a2b2bc

这两块三角尺都具有性质a2b2bc

在△ABC中,如果一个内角等于另一个内角的2倍,我们就称这种三角形为倍角三角   

形。两块三角尺就都是特殊的倍角三角形。对于任意的倍角三角形,上面的性质仍然

成立吗?暂时把我们的设想作为一个猜测:

如图(3),在△ABC中,若∠CAB2ABC,则a2b2bc

在上述由三角尺的性质到猜想这一认识过程中,用到了下列四种数学思想方法中的哪  

一种?选出一个正确的并将其序号填在括号内………………………………………( 

①分类的思想方法  ②转化的思想方法  ③由特殊到一般的思想方法  ④数形结合的

思想方法

2)这个猜测是否正确?请证明。

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下列材料,按要求回答问题.
(1)观察下面两块三角尺,它们有一个共同的性质:∠A=2∠B,我们由此出发来进行思考.
在图(1)中作斜边上的高CD,由于∠B=30°,可知c=2b,∠ACD=30°,于是AD=数学公式,BD=c-数学公式,由于△CDB∽△ACB,可知,即a2=c•BD.同理b2=c•AD,于是a2-b2=c(BD-AD)=c(c-b)=bc.对于图(2),由勾股定理有a2=b2+c2,由于b=c,故也有a2-b2=bc.
在△ABC中,如果一个内角等于另一个内角的2倍,我们称这样的三角形为倍角三角形,两块三角尺都是特殊的倍角三角形,对于任意倍角三角形,上面的结论仍然成立吗?我们暂时把设想作为一种猜测:
如图(3),在△ABC中,若∠CAB=2∠ABC,则a2-b2=bc.
在上述由三角尺的性质到“猜测”这一认识过程中,用到了下列四种数学思想方法中的哪一种选出一个正确的并将其序号填在括号内
①分类的思想方法②转化的思想方法③由特殊到一般的思想方法④数形结合的思想方法
(2)这个猜测是否正确,请证明.

查看答案和解析>>

同步练习册答案