精英家教网 > 初中数学 > 题目详情
如图,一次函数y1=x+1的图象与反比例函数y2=的图象交与A(1,M),B(n,-1)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO,BO.得出以下结论:
①点A和点B关于直线y=-x对称;
②当x<1时,y2>y1
③S△AOC=S△BOD
④当x>0时,y1,y2都随x的增大而增大.
其中正确的是( )

A.①②③
B.②③
C.①③
D.①②③④
【答案】分析:先把A(1,M),B(n,-1)两点代入y1=x+1求出m、n,确定A点与B点坐标,则可对①进行判断;观察函数图象得到当x<-2或0<x<1时,y2>y1,则可对②进行判断;根据反比例函数的比例系数k的几何意义可对③进行判断;根据一次函数与反比例函数的性质可对④进行判断.
解答:解:把A(1,M),B(n,-1)两点代入y1=x+1得m=2,n=-2,
则A点坐标为(1,2),B(-2,-1),
所以点A和点B关于直线y=-x对称,所以①正确;
当x<-2或0<x<1时,y2>y1,所以②错误;
S△AOC=S△BOD,所以③正确;
当x>0时,y1都随x的增大而增大;y2都随x的增大而减小,所以④错误.
故选C.
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式和反比例函数的比例系数k的几何意义.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
的图象交于A、B两点,点A、B的横坐标分别为-2、1.当y1>y2时,自变量x的取值范围是(  )
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
mx
 
(m≠0)
的图象交于二、四象限内的A、B两点,过A作AC⊥x轴于点C,连接OA、OB、BC.已知OC=4,tan∠OAC=2,点B的纵坐标为-6.
(1)求反比例函数和直线AB的解析式;
(2)求四边形OACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b的图象与反比例函数y2=
mx
的图象相交于A、B两点,试利用图中条件,求y1和y2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+1(k≠0)与反比例函数y2=
mx
(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
(3)当y1>y2时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b与反比例函数y2=-
6x
交于点A(m,6)、B(3,n).
(1)求一次函数的关系式;
(2)求△AOB的面积;
(3)直接写出y1>y2时x的取值范围.

查看答案和解析>>

同步练习册答案