精英家教网 > 初中数学 > 题目详情
(2012•香坊区二模)已知:在△ABC中,∠ACB=90°,AC=2BC,D是线段AC上一点,E是线段CD上一点,过点D作DF⊥BE交BE的延长线于点F,连接CF.
(1)当点D是线段AC的中点时(如图1),求证:BF-DF=
2
CF:
(2)当点D与点A重合时,在线段EF上取点G,使GF=
1
2
DF,连接DG并延长交CF于点H,交 BC延长线相交于点P(如图2),CH:HF=4:5,EG=
3
4
,求PH的长.
分析:(1)过点C作CM⊥CF交BE于点M,可以证得△MCF是等腰直角三角形,则MF=
2
CF,证明BF-DF=MF即可;
(2)首先证明△ECF∽△EBD,得到∠EFC=∠BDC,则可以证明△HFG∽△HDF,△HFG∽△HDF,根据CH∥BD,可以证得:△PCH∽△PBD,根据相似三角形的对应边的比相等,即可求得.
解答:证明:(1)过点C作CM⊥CF交BE于点M.
∵∠BCM+∠ECM=∠DCF+∠ECM=90°,
∴∠BCM=∠DCM
∵∠CBM+∠CEM=∠FDC+∠FED=90°,
∴∠CEM=∠FED
∴∠CBM=∠FDC
∵点D是AC的中点,
∴AC=2CD,
∵AC=2BC
∴CD=BC
∴△CBM≌△CDF,
∴BM=DF,CM=CF,
∵∠MCF=90°,
∴△MCF是等腰直角三角形,
∴∠CMF=45°,
∴sin45°=
CF
MF

∴MF=
2
CF,
∵BF-BM=MF,
∴BF-DF=
2
CF;
(2)设CH=4k,
∵CH:HF=4:5,
∴HF=5k,
∴∠BCE=∠DFE,∠CEB=∠FED,
∴△ECB∽△EFD,
CE
FE
=
BE
DE

CE
BE
=
FE
DE

∵∠CEF=∠BED,
∴△ECF∽△EBD,
∴∠EFC=∠BDC,
∵Rt△ACB中,tan∠BAC=
BC
AC
=
1
2
,在Rt△GFD中,tan∠FDG=
FG
DF
=
1
2

∴∠BDC=∠FDG=∠EFC,
又∵∠FHG=∠DHF
∴△HFG∽△HDF
HF
DH
=
HG
HF
=
GF
DF
=
1
2

∴HG=
5
2
k,DH=10k,
∴GD=
15
2
k,
∴在Rt△GFD中,GF=
3
5
2
k,DF=3
5
k,
DF
FH
=
FC
DF

又∵∠HFD=∠DFC
∴△FHD∽△FDC,
∴∠FDH=∠FCD=∠BDC,
∴CF∥AB
∴∠FBD=∠BFC=∠FDH,
∴tan∠FBD=
1
2

∴在Rt△FBD中,BF=6
5
k,AB=15k,
∴EF=
3
5
2
k+
3
4
,BE=
9
5
2
k-
3
4

∴△CEF∽△BED,
EF
ED
=
CF
DB
,即
3
5
2
k+
3
4
9
5
k
2
-
3
4
=
9k
15k

∴k=
5
5

∴HD=10k=2
5

∵CH∥BD,
∴△PCH∽△PBD,
PH
PH+HD
=
CH
BD
=
4k
15k

PH
PH+2
5
=
4
15

∴PH=
8
5
11
点评:本题考查了相似三角形的判定与性质,正确根据相似三角形的对应边的比相等,用k表示PH、HD的长度是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•香坊区二模)小区要用篱笆围成一个四边形花坛、花坛的一边利用足够长的墙,另三边所用的篱笆之和恰好为18米.围成的花坛是如图所示的四边形ABCD,其中∠ABC=∠BCD=90°,且BC=2AB.设AB边的长为x米.四边形ABCD面积为S平方米.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围).
(2)当x是多少时,四边形ABCD面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香坊区二模)下列运算正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香坊区二模)下列图形中,既是轴对称图形又是中心对称图形的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香坊区二模)抛物线y=(x-2)2的对称轴是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香坊区二模)如图,在矩形ABCD的边AB上有一点E,边AD上有一点F,将此矩形沿EF折叠使点A落在BC边上的点G处,且∠AFE=30°,则∠EGB等于(  )

查看答案和解析>>

同步练习册答案