精英家教网 > 初中数学 > 题目详情

【例1】 已知f(x)=4x2-2x+1,g(x)=,求f(),f(-x),g(),fg(x)],gf(x)].

解:f()=4()2-2?+1=7,

f(-x)=4?(-x)2-2(-x)+1=4x2+2x+1,

g()==,

fg(x)]=4[g(x)]2-2[g(x)]+1

=4?()2-2?+1

=,

gf(x)]==

=.

评注:本题是已知fg这两个对应法则,求它们的一些函数值或由它们构造的复合函数(值).这类问题只要将自变量x或其代数式直接代入即可解决.若已知的是由两个函数复合而成的复合函数以及其中一个函数,那么怎样去求另一个函数呢?常见的方法有:待定系数法、拼凑法、换元法及消去法等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【例1】 已知f(x)=4x2-2x+1,g(x)=,求f(),f(-x),g(),fg(x)],gf(x)].

解:f()=4()2-2?+1=7,

f(-x)=4?(-x)2-2(-x)+1=4x2+2x+1,

g()==,

fg(x)]=4[g(x)]2-2[g(x)]+1

=4?()2-2?+1

=,

gf(x)]==

=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【例1】 已知f(x)=4x2-2x+1,g(x)=,求f(),f(-x),g(),fg(x)],gf(x)].

解:f()=4()2-2?+1=7,

f(-x)=4?(-x)2-2(-x)+1=4x2+2x+1,

g()==,

fg(x)]=4[g(x)]2-2[g(x)]+1

=4?()2-2?+1

=,

gf(x)]==

=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【例1】 已知f(x)=4x2-2x+1,g(x)=,求f(),f(-x),g(),fg(x)],gf(x)].

解:f()=4()2-2?+1=7,

f(-x)=4?(-x)2-2(-x)+1=4x2+2x+1,

g()==,

fg(x)]=4[g(x)]2-2[g(x)]+1

=4?()2-2?+1

=,

gf(x)]==

=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【例1】 已知f(x)=4x2-2x+1,g(x)=,求f(),f(-x),g(),fg(x)],gf(x)].

解:f()=4()2-2?+1=7,

f(-x)=4?(-x)2-2(-x)+1=4x2+2x+1,

g()==,

fg(x)]=4[g(x)]2-2[g(x)]+1

=4?()2-2?+1

=,

gf(x)]==

=.

查看答案和解析>>

同步练习册答案