精英家教网 > 初中数学 > 题目详情

如果边上一点,并且,则是(        )

A.锐角三角形      B.钝角三角形      C.直角三角形      D.等腰三角形

 

【答案】

D

【解析】

试题分析:根据全等三角形的对应边相等,即可判断。

∴AB=AC,

是等腰三角形,

故选D.

考点:本题考查的是全等三角形的性质

点评:解答本题的关键是掌握全等三角形的对应边相等。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,E是在AC边上的一个动点(与点A、C不重合),DF⊥DE,DF与射线BC相交于点F.
(1)如图2,如果点D是边AB的中点,求证:DE=DF;
(2)如果AD:DB=m,求DE:DF的值;
(3)如果AC=BC=6,AD:DB=1:2,设AE=x,BF=y,
①求y关于x的函数关系式,并写出定义域;
②以CE为直径的圆与直线AB是否可相切?若可能,求出此时x的值;若不可能,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

从甲、乙两题中选做一题.如果两题都做,只以甲题计分.
题甲:若关于x一元二次方程x2-2(2-k)x+k2+12=0有实数根a,β.
(1)求实数k的取值范围;
(2)设t=
a+β
k
,求t的最小值.
题乙:如图所示,在矩形ABCD中,P是BC边上一点,连接DP并延长,交AB的延长线精英家教网于点Q.
(1)若
BP
PC
=
1
3
,求
AB
AQ
的值;
(2)若点P为BC边上的任意一点,求证:
BC
BP
-
AB
BQ
=.
我选做的是
 
题.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=4,BC=5,D是BC边上一点,CD=3,点P在边AC上(点P与A、C不重合),过点P作PE∥BC,交AD于点E.
(1)设AP=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;
(2)当以PE为半径的⊙E与DB为半径的⊙D外切时,求∠DPE的正切值;
(3)将△ABD沿直线AD翻折,得到△AB′D,连接B′C.如果∠ACE=∠BCB′,求AP的值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•雨花台区一模)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,D是BC边上一点,CD=3cm,点P为边AC上一动点(点P与A、C不重合),过点P作PE∥BC,交AD于点E.点P以1cm/s的速度从A到C匀速运动.
(1)设点P的运动时间为t(s),DE的长为y(cm),求y关于t的函数关系式,并写出t的取值范围;
(2)当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时∠DPE的正切值;
(3)将△ABD沿直线AD翻折,得到△AB’D,连接B’C.如果∠ACE=∠BCB’,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在梯形ABCD中,AD∥BC,AB=DC=5,AD=3.5,sinB=
45
,点E是AB边上一点,BE=3,点P是BC边上的一动点,连接EP,作∠EPF,使得∠EPF=∠B,射线PF与AD边交于点F,与CD的延长线交于点G,设BP=x,DF=y.
(1)求BC的长;
(2)试求y关于x的函数关系式,并写出定义域;
(3)连接EF,如果△PEF是等腰三角形,试求BP的长.

查看答案和解析>>

同步练习册答案