精英家教网 > 初中数学 > 题目详情
(2009•江苏)如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

【答案】分析:(1)二次函数y=ax2+bx的顶点在已知二次函数抛物线的对称轴上,可知两个函数对称轴相等,因此先根据已知函数求出对称轴. y=x2-2x-1=(x-1)2-2,所以顶点A的坐标为(1,-2)对称轴为x=1,
所以二次函数y=ax2+bx关于x=1对称,且函数与x轴的交点分别是原点和C点,
所以点C和点O关于直线l对称,所以点C的坐标为(2,0);
(2)因为四边形AOBC是菱形,根据菱形性质,可以得出点O和点C关于直线AB对称,点B和点A关于直线OC对称,因此,可求出点B的坐标,点B的坐标为(1,2),
二次函数y=ax2+bx的图象经过点B(1,2),C(2,0),将B,C代入解析式,可得,
解得,所以二次函数y=ax2+bx的关系式为y=-2x2+4x.
解答:解:(1)∵y=x2-2x-1=(x-1)2-2,
∴顶点A的坐标为(1,-2).
∵二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
∴二次函数y=ax2+bx的对称轴为:直线x=1,
∴点C和点O关于直线x=1对称,
∴点C的坐标为(2,0).

(2)因为四边形AOBC是菱形,所以点B和点A关于直线OC对称,
因此,点B的坐标为(1,2).
因为二次函数y=ax2+bx的图象经过点B(1,2),C(2,0),
所以
解得
所以二次函数y=ax2+bx的关系式为y=-2x2+4x.
点评:本题主要考查利用二次函数和菱形的对称性求有关的点,再用待定系数法求二次函数解析式,是难度中等的考题.
练习册系列答案
相关习题

科目:初中数学 来源:2009年江苏省中考数学试卷(解析版) 题型:解答题

(2009•江苏)如图,已知二次函数y=x2-2x-1的图象的顶点为A.二次函数y=ax2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax2+bx的关系式.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省中考数学试卷(解析版) 题型:解答题

(2009•江苏)如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4).动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.
(1)请用含t的代数式分别表示出点C与点P的坐标;
(2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.
①当⊙C与射线DE有公共点时,求t的取值范围;
②当△PAB为等腰三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省中考数学试卷(解析版) 题型:解答题

(2009•江苏)如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.
(1)求观测点B到航线l的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中数学 来源:2009年江苏省中考数学试卷(解析版) 题型:填空题

(2009•江苏)如图,AB是⊙O的直径,弦CD∥AB.若∠ABD=65°,则∠ADC=    度.

查看答案和解析>>

同步练习册答案