
(1)证明:∵D、E、F分别为AB、BC、CA上的中点.
∴DE


AC,EF


AB,
∴四边形ADEF是平行四边形.
又∵AB=AC,
∴DE=EF,
∴平行四边形ADEF的菱形;
(2)如图,连接AE、DF交于点O.
∵四边形ADEF是菱形,
∴AE⊥DF,OA=

AE,OD=

DF.
∵AD=

AB=

,DF=

BC=5,
∴在直角△ADO中,由勾股定理知OA=

=

=6,
∴AE=2OA=12,
∴菱形ADEF的面积=

DF•AE=

5×12=30,即四边形ADEF的面积是30.
分析:(1)利用三角形中位线定理判定四边形ADEF是菱形;
(2)菱形ADEF的面积等于该菱形两对角线乘积的一半.
点评:本题考查了勾股定理、三角形中位线定理、等腰三角形的性质以及菱形的判定与性质.菱形是邻边相等的平行四边形.