精英家教网 > 初中数学 > 题目详情

已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD。

(1)如图1,当点P在线段OC上时,求证:OP=CD;

(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;

(3)如图2,抛物线y=-x2+x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形,若存在,请求出t的值;若不存在,请说明理由。

 

【答案】

(1)证明略;4分

(2)t1=2,t2=,t3=    4分(一个对2分,以后每个1分)

  (3)t1=2,t2=12,t3=-6,t4=-2   4分

【解析】第一问中,根据B,P点的坐标,以及过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD,可知得到直角三角形,利用△AOP全等于△OCD,得到结论。

第二问中,在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,利用相似比得到t的值

第三问中,要在抛物线上找到一点Q,使得以P、D、Q、C为顶点的四边形为平行四边形,则平行的对边情分为几种,就是PD//QC,PC//QD,PQ//CD,然后利用点直线平行得到参数t的值即为t1=2,t2=12,t3=-6,t4=-2

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知:正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF中和正方形OABC不重合部分的面积为S.
(1)求点B坐标和k的值.
(2)当S=
9
2
时,求P的坐标.
(3)写出S关于m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:正方形OABC的边OC、OA分别在x、y轴的正半轴上,设点B(4,4),点P(t,0)是x轴上一动点,过点O作OH⊥AP于点H,直线OH交直线BC于点D,连AD.
(1)如图1,当点P在线段OC上时,求证:OP=CD;
(2)在点P运动过程中,△AOP与以A、B、D为顶点的三角形相似时,求t的值;
(3)如图2,抛物线y=-
1
6
x2+
2
3
x+4上是否存在点Q,使得以P、D、Q、C为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),已知:正方形OABC,A、C分别在x轴、y轴上,点B在第一象限;将一直角三角板的直角顶点置于点B处,设两直角边(足够长)分别交x轴、y轴于点E、F,连接EF.
(1)判断CF与AE的大小关系,并说明理由.
(2)已知F(0,6),EF=10,求点B的坐标.
(3)如图(2),已知正方形OABC的边长为6,若将三角板的直角顶点移到BC的中点M处,旋转三角板;当点F在OC边上时,设CF=x,AE=y,直接写出y与x的函数关系式及自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》常考题集(43):23.6 反比例函数(解析版) 题型:解答题

如图,已知:正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=(k>0,x>0)的图象上,点P(m,n)是函数y=(k>0,x>0)的图象上的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF中和正方形OABC不重合部分的面积为S.
(1)求点B坐标和k的值.
(2)当S=时,求P的坐标.
(3)写出S关于m的函数关系式.

查看答案和解析>>

科目:初中数学 来源:《第1章 反比例函数》2010年单元测评(解析版) 题型:解答题

如图,已知:正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=(k>0,x>0)的图象上,点P(m,n)是函数y=(k>0,x>0)的图象上的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF中和正方形OABC不重合部分的面积为S.
(1)求点B坐标和k的值.
(2)当S=时,求P的坐标.
(3)写出S关于m的函数关系式.

查看答案和解析>>

同步练习册答案