精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,AB=BC=12,E为AB中点,∠DCE=45°,求DE的长.
分析:过D作DG垂直BC于G,过C作∠DCF为90度交AB的延长线于F,求出矩形ABGD,推出AB=DG=BC,∠DGC=90°=∠FBC,求出∠CDG=∠FCB,推出△DCG≌△FBC,得出DC=CF,根据SAS证△DCE≌△FCE,推出DE=EF,设DE=x,AE=BE=6,求出AD=18-x,根据勾股定理得出方程,求出即可.
解答:解:过D作DG垂直BC于G,过C作∠DCF为90度交AB的延长线于F,
∵AD∥BC,∠ABC=90°,DG⊥BC,
∴∠ABC=∠DGB=∠A=90°,
∴四边形ADGB是矩形,
∴AB=DG=BC,∠DGC=90°=∠FBC,
∵∠DCF=90°,
∴∠DCG+∠CDG=90°,∠DCG+∠BCF=90°,
∴∠CDG=∠BCF,
∵在△DCG和△FBC中
∠CDG=∠BCF
DG=BC
∠DGC=∠FBC

∴△DCG≌△FBC,
∴DC=CF,
∵∠DCE=45°,∠DCF=90°,
∴∠ECF=90°-45°=45°=∠DCE,
∵在△DCE和△FCE中
DC=CF
∠DCE=∠FCE
CE=CE

∴△DCE≌△FCE,
∴DE=EF,
设DE=x,AE=
1
2
AB=6,
∵AD=BG=12-CG=12-BF=12-(EF-6)=18-EF=18-x,
∴在Rt△EAD中,由勾股定理得:62+(18-x)2=x2
解得:DE=x=10.
点评:本题考查的知识点有全等三角形的性质和判定,勾股定理,直角梯形的性质,能综合运用性质进行推理是解此题的关键,题目综合性比较强,有一定的难度.用了方程思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案