已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点:
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边)是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.
|
分析:(1)要证抛物线与x轴有两个不同的交点,实际上就是一元二次方程x2+mx-2m2=0有两个不相等的实数根,只要证出b2-4ac>0即可. (2)由题意可知A、B两点的纵坐标为n,代入抛物线解析式找出m、n的关系. (1)证明:∵m2-4×1×(-2m)2=m2+8m2=9m2>0,∴抛物线与x轴有两个不同的交点. (2)解:存在. 由题意知:A、B两点的纵坐标为n,代入抛物线的解析式得x2+mx-2m2=n,即x2+mx-2m2-n=0. 设A(x1,n),B(x2,n),则|x1|=2|x2|,即x1=±2x2. ① 消去x1、x2得 ② 消去x1,x2,得-2m2=-2m2-n,解得n=0,m≠0的实数. 所以m、n满足的条件为n= |
|
命题立意:考查二次函数与一元二次方程的关系. 点评:此题综合性强,难度较大,解决的关键是将二次函数问题转化为一元二次方程问题,然后求解. |
科目:初中数学 来源:2013年辽宁省营口市中考模拟(一)数学试卷(带解析) 题型:解答题
如图,已知抛物线y=
x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.![]()
(1)填空:点C的坐标是 ,b= ,c= ;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2013年辽宁省营口市中考模拟(一)数学试卷(解析版) 题型:解答题
如图,已知抛物线y=
x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
![]()
(1)填空:点C的坐标是 ,b= ,c= ;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源:2011届江苏省太仓市九年级上学期期中考试数学卷 题型:填空题
已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2011的值是 ▲ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com