精英家教网 > 初中数学 > 题目详情
已知,在四边形ABCD中.∠A=∠C=90゜.
(1)求证:∠ABC+∠ADC=180゜;
(2)如图1,若DE平分∠ADC,BF平分∠ABC外角,写出DE与BF的位置关系,并证明;
(3)如图2,若BF、DE分别平分∠ABC、∠ADC的外角,写出BF与DE的位置关系,并证明.
分析:(1)由在四边形ABCD中.∠A=∠C=90゜,根据四边形的内角和定理,即可证得:∠ABC+∠ADC=180゜;
(2)延长DE交BF于G.易证∠ADC=∠CBM.可得∠CDE=∠EBF.即可得∠EGB=∠C=90゜,则可证得DE⊥BF.
(3)连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF.
解答:证明:(1)∵∠A=∠C=90゜,
∴在四边形ABCD中,∠ABC+∠ADC=360°-∠A-∠C=180゜;

(2)DE⊥BF.
延长DE交BF于G,
∵∠ABC+∠ADC=180°,∠AB+∠CBM=180°,
∴∠ADC=∠CBM,
∵DE平分∠ADC,BF平分∠ABC外角,
∴∠CDE=
1
2
∠ADC,∠EBF=
1
2
∠CBM,
∴∠CDE=∠EBF.
∵∠DEC=∠BEG,
∴∠EGB=∠C=90゜,
∴DE⊥BF.

(3)DE∥BF,
连接BD,
∵∠ABC+∠ADC=180°,
∴∠NDC+∠MBC=180゜,
∵BF、DE分别平分∠ABC、∠ADC的外角,
∴∠EDC+∠CBF=90゜,
∴∠EDC+∠CDB+∠CBD+∠FBC=180゜,
∴DE∥BF.
点评:此题考查了三角形内角和定理,平行线的性质以及三角形外角的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、(1)如图1,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.
①请你判断△ABC与△ABD的面积具有怎样的关系?
②若点D在直线m上可以任意移动,△ABD的面积是否发生变化?并说明你的理由.
(2)如图2,已知:在四边形ABCD中,连接AC,过点D作EF∥AC,P为EF上任意一点(与点D不重合).请你说明四边形ABCD的面积与四边形ABCP的面积相等.
(3)如图3是一块五边形花坛的示意图.为了使其更规整一些,园林管理人员准备将其修整为四边形,根据花坛周边的情况,计划在BC的延长线上取一点F,沿EF取直,构成新的四边形ABFE,并使得四边形ABFE的面积与五边形ABCDE的面积相等.请你在图3中画出符合要求的四边形ABFE,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,⊙O与斜边AC交于点D,E为BC边的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,若四边形AOED是平行四边形,求∠CAB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,在等腰△ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠BCA=90°,AC=3,BC=4,CD是斜边AB边上的高,点E、F分别是AC、BC边上的动点,连接DE、DF、EF,且∠EDF=90°.

(1)当四边形CEDF是矩形时(如图1),试求EF的长并直接判断△DEF与△DAC是否相似.
(2)在点E、F运动过程中(如图2),△DEF与△DAC相似吗?请说明理由;
(3)设直线DF与直线AC相交于点G,△EFG能否为等腰三角形?若能,请直接写出线段AE的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在四边形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD=4cm,∠ABC=∠DCB,求BC的长.

查看答案和解析>>

同步练习册答案