精英家教网 > 初中数学 > 题目详情
在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C(0,4).点D(4,7)为线段BC的中点,动点P从O点出发精英家教网,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.
(1)求直线BC的解析式;
(2)设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;
(3)当t为何值时,△OPD的面积是梯形OABC的面积的
38
分析:用待定系数法设出直线BC的解析式为Y=kx+b,代入求出一次函数的解析式是y=
3
4
x+4,再用面积公式s=
1
2
ab求出P的坐标,进一步求出s与t的关系式
解答:解:(1)设直线BC的解析式为y=kx+b,
将C(0,4),B(8,10)代入得:
4=0×k+b
10=8×k+b

解得:
k=
3
4
b=4

即y=
3
4
x+4,
所以直线BC的解析式为:y=
3
4
x+4.

(2)有两种情况:
①当P在OA上运动时;
∴OP=t×1=t,△OPD的边OP上的高是7,
∴△OPD的面积为:
S=
1
2
×t×7
即S=
7
2
t(0<t≤8),

②当P在AB上运动时:
∵A(8,0),B(8,10),C(0,4),D(4,7),精英家教网
△ODC的面积为:
S1=
1
2
×4×4=8,
△OPA的面积是:
S2=
1
2
×8×(t-8)=4t-32,
△DBP的面积是:
S3=
1
2
×{10-(t-8)}×(8-4)=36-2t,
四边形OABC的面积是:
S4=
1
2
×(4+10)×8=56,
∴△ODP的面积是:
S=S4-S1-S2-S3=56-8-(4t-32)-(36-2t)=-2t+44,
即S=-2t+44(8<t≤18),
∴S=
7
2
t(0<t≤8)
-2t+44(8<t≤18)

精英家教网
(3)由(2)可知:
a:
7
2
t=
3
8
×56,
解得t=6秒,
b:-2t+44=
3
8
×56,
解得t=11.5秒,
∴t=6秒或t=11.5秒.
点评:这题的关键是考查已知两点坐标用设出解析式y=kx+b求出一次函数的解析式,利用面积公式求出关系式,利用分类讨论思想求出t值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•河北区一模)如图,在梯形ABCO中,A(0,2),B(4,2),O为原点,点C为x轴正半轴上一动点,M为线段BC中点.
(Ⅰ)设C(x,0),S△AOM=y,求y与x的关系式,并写出x的取值范围;
(Ⅱ)如果以线段AO为直径的⊙D与以BC为直径的⊙M外切,求x的值.
(Ⅲ)连BO,交线段AM于N,如果以A,N,B为顶点的三角形与△OMC相似,请写出直线CN的解析式(不要过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C(0,4).点D(4,7)为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.
(1)求直线BC的解析式;
(2)设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;
(3)当t为何值时,△OPD的面积是梯形OABC的面积的数学公式

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省金华四中九年级毕业生学业考试模拟数学卷(带解析) 题型:解答题

如图1,在等腰梯形ABCO中,ABCOEAO的中点,过点EEFOCBCFAO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OCx轴正半轴上,点AB在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点PPMEFOC于点M,过MMNAO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGHHEF上,DG落在OC上,∠EDG=90°,且DG=3,HGBC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为EDGH′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形EDGH′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2012年天津市河北区中考数学一模试卷(解析版) 题型:解答题

如图,在梯形ABCO中,A(0,2),B(4,2),O为原点,点C为x轴正半轴上一动点,M为线段BC中点.
(Ⅰ)设C(x,0),S△AOM=y,求y与x的关系式,并写出x的取值范围;
(Ⅱ)如果以线段AO为直径的⊙D与以BC为直径的⊙M外切,求x的值.
(Ⅲ)连BO,交线段AM于N,如果以A,N,B为顶点的三角形与△OMC相似,请写出直线CN的解析式(不要过程).

查看答案和解析>>

同步练习册答案