精英家教网 > 初中数学 > 题目详情

如图,已知直角梯形ABCD中,AD∥BC,Ð B=90°,AB=12 cm,BC=8 cm,DC=13 cm,动点P沿A→D→C线路以2 cm/秒的速度向C运动,动点Q沿B→C线路以1 cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ym2

(1)求AD的长及t的取值范围;

(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;

(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.

解:

答案:
解析:

  (1)在梯形ABCD中,AD∥BC、Ð B=90°过D作DE^ BC于E点

  ∴AB∥DE

  ∴四边形ABED为矩形      1分

  DE=AB=12 cm

  在Rt△DEC中,DE=12 cm,DC=13 cm

  ∴EC=5 cm

  ∴AD=BE=BC=EC=3 cm      2分

  点P从出发到点C共需=8(秒)

  点Q从出发到点C共需=89少)  3分

  又∵t≥0

  ∴o≤t≤8    4分

  (2)当t=1.5(秒)时,AP3,即P运动到D点    5分

  ∴当1.5≤t≤8时,点P在DC边上

  ∴PC=16-2t

  过点P作PM⊥BC于M

  ∴PM∥DE

  ∴

  ∴(16-2t)    7分

  又∵BQ=t

  ∴

  =

  =      3分

  (3)当0≤t≤1.5时,△PQB的面积随着t的增大而增大;

  当1.5<t≤4时,△PQB的面积随着t的增大而(继续)增大;

  当4<t≤8时,△PQB的面积随着t的增大而减小.      12分

  注:①上述不等式中,“1.5<t≤4”、“4<t≤8”写成“1.5≤t≤4”、“4≤t≤8”也得分.

  ②若学生答:当点P在AD上运动时,△PQB的面积先随着t的增大而增大,当点P在DC上运动时,△PQB的面积先随着t的增大而(继续)增大,之后又随着t的增大而减小.给2分

  ③若学生答:△PQB的面积先随着t的增大而减小给1分


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直角梯形ABCD中,AD∥BC∥EF,∠A=90°,BC=DC=4,AC、BD交于E,且EF=ED.
(1)求证:△DBC为等边三角形.
(2)若M为AD的中点,求过M、E、C的抛物线的解析式.
(3)判定△BCD的外心是否在该抛物线上(说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

21、当我们遇到梯形问题时,我们常用分割的方法,将其转化成我们熟悉的图形来解决:
(1)按要求对下列梯形分割(分割线用虚线)
①分割成一个平行四边形和一个三角形;  ②分割成一个长方形和两个直角三角形;

(2)如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=4cm,BC=8cm,∠C=45°,请你用适当的方法对梯形分割,利用分割后的图形求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为 (  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.点E是CD的中点,点F是AB上的点,∠ADF=45°,FE=a,梯形ABCD的面积为m.
(1)求证:BF=BC;
(2)求△DEF的面积(用含a、m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,∠C=60°,BC=12cm,DC=16cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为y cm2
(1)求AD的长及t的取值范围;
(2)求y关于t的函数关系式;
(3)是否存在这样的t,使得△PQB的面积为
9
3
2

查看答案和解析>>

同步练习册答案