精英家教网 > 初中数学 > 题目详情
如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°,以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF。

(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长。
解:(1)∵△ADF为等边三角形,
∴AF=AD,∠FAD=60°
∵∠DAB=90°,∠EAD=15°,AD=AB
∴∠FAE=∠BAE=75°,AB=AF
∵AE为公共边
∴△FAE≌△BAE
∴EF=EB。
(2)如图,连结EC
∵在等边三角形△ADF中,
∴FD=FA,
∵∠EAD=∠EDA=15°,
∴ED=EA,
∴EF是AD的垂直平分线,
则∠EFA=∠EFD=30°
由(1)△FAE≌△BAE知∠EBA=∠EFA=30°
∵∠FAE=∠BAE=75°,
∴∠BEA=∠BAE=∠FEA=75°,
∴BE=BA=6
∵∠FEA+∠BEA+∠GEB=180°,
∴∠GEB=30°,
∵∠ABC=60°,
∴ ∠GBE=30°
∴GE=GB
∵点G是BC的中点,
∴EG=CG
∵∠CGE=∠GEB+∠GBE=60°,
∴△CEG为等边三角形,
∴∠CEG=60°,
∴∠CEB=∠CEG+∠GEB=90°
∴在Rt△CEB中,BC=2CE,BC2=CE2+BE2
∴CE=
∴BC=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形精英家教网ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求证:BC=CD;
(2)在边AB上找点E,连接CE,将△BCE绕点C顺时针方向旋转90°得到△DCF.连接EF,如果EF∥BC,试画出符合条件的大致图形,并求出AE:EB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)若EF=6,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

查看答案和解析>>

同步练习册答案