【题目】某校的一个数学兴趣小组在本校学生中开展主题为“环广西公路自行车世界巡回赛”的专题调查活动,取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示不完整的统计图,请结合图中信息解答下列问题:
![]()
(1)请求出本次被调查的学生共多少人,并将条形统计图补充完整.
(2)估计该校1500名学生中“C等级”的学生有多少人?
(3)在“B等级”的学生中,初三学生共有4人,其中1男3女,在这4个人中,随机选出2人进行采访,则所选两位同学中有男同学的概率是多少?请用列表法或树状图的方法求解.
【答案】(1)50人,图见解析;(2)估计该校1500名学生中“C等级”的学生有300人;(3)
【解析】分析:(1)、收下根据A的人数和百分比得出被调查的总人数,然后得出D等级的人数,将图形进行补全;(2)、根据C等级在样本中所占的比例估计出总人数;(3)、根据题意列出表格,然后根据概率的计算法则求出概率.
详解:(1)本次被调查的学生人数为15÷30%=50人,
则D等级人数为50﹣(15+20+10)=5(人),
补全统计图如下:
![]()
(2)1500×
=300(人),
答:估计该校1500名学生中“C等级”的学生有300人;
(3)列表如下:
第一次所选 第二次所选 | 男 | 女 | 女 | 女 |
男 | 男,女 | 男,女 | 男,女 | |
女 | 女,男 | 女,女 | 女,女 | |
女 | 女,男 | 女,女 | 女,女 | |
女 | 女,男 | 女,女 | 女,女 |
由上表可知,从4为同学中选两位同学的等可能结果共有12种,其中所选两位同学中有男同学的结果共有6种. 所以所选两位同学中有男同学的概率为
=
.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正确的个数为( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为2,将射线AB绕点A顺时针旋转α,所得射线与线段BD交于点M,作CE⊥AM于点E,点N与点M关于直线CE对称,连接CN.
(1)如图,当0°<α<45°时:
①依题意补全图;
②用等式表示∠NCE与∠BAM之间的数量关系:___________;
(2)当45°<α<90°时,探究∠NCE与∠BAM之间的数量关系并加以证明;
(3)当0°<α<90°时,若边AD的中点为F,直接写出线段EF长的最大值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=6,BC=8,点D是BC边上的一个动点,点E在AC边上,∠ADE=∠B.设BD的长为x,CE的长为y.
(1)当D为BC的中点时,求CE的长;
(2)求y关于x的函数关系式,并写出x的取值范围;
(3)如果△ADE为等腰三角形,求x的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AD与⊙O相切于一点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.
⑴求证:BC为⊙O的切线;
⑵若AB=2
,AD=2,求线段BC的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图像的一部分,其对称轴是直线x=-1,且过点(-3,0),下列说法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是抛物在线两点,则y1>y2,其中正确的是( )
![]()
A.② B.②③ C.②④ D.①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程
,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.
![]()
(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的m就是方程
的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程
(a≠0,
≥0)的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行于x轴的直线
分别与一次函数y=-x+3和二次函数y= x2 -2x-3的图象交于A(x1,y1),B(x2,y2),C(x3,y3)三点,且x1<x2<x3,设m= x1+x2+x3,则m的取值范围是____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com