精英家教网 > 初中数学 > 题目详情

⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=(  )

A.30°B.45°C.55°D.60°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知P是正方形ABCD内一点,将△ABP绕点B旋转,使得边BA与边BC重合,点P落在点P′的位置上.如果PB=3,那么PP′的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP顺时针方向旋转,使点A与点C重合,这时P点旋转到G点,
(1)请画出旋转后的图形,你能说出此时△ABP以点B为旋转中心转了多少度吗?
(2)求证:△PGC是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•中山区二模)已知:如图1,点O为正方形ABCD内任一点,连接AO、BO,分别以AO、BO为一边作如图所示正方形BOMN和正方形AOFE,连接CN
(1)AE、CN之间有怎样的关系?请验证;
(2)若点O是正方形ABCD外部一点,如图2,其他条件不变(1)的结论是否成立?请验证.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是正方形ABCD的对角线上一点,PE⊥AB,PF⊥BC,垂足分别为E、F.
(1)求证:PD=EF;
(2)猜想PD与EF的位置关系,不必说明理由.
(3)设正方形的边长为4,点P在AC上移动(点P不与A、C重合),AP的长为x,△PEF的面积为S,试写出S与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

作一个图形关于一条直线的轴对称图形,再将这个轴对称图形沿着与这条直线平行的方向平移,我们把这样的图形变换叫做关于这条直线的滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1),结合轴对称和平移的有关性质,解答以下问题:精英家教网
(1)如图2,在关于直线l的滑动对称变换中,试证明:两个对应点A,A′的连线被直线l平分;
(2)若点P是正方形ABCD的边AD上的一点,点P关于对角线AC滑动对称变换的对应点P′也在正方形ABCD的边上,请仅用无刻度的直尺在图3中画出P′;
(3)定义:若点M到某条直线的距离为d,将这个点关于这条直线的对称点N沿着与这条直线平行的方向平移到点M′的距离为s,称[d,s]为点M与M′关于这条直线滑动对称变换的特征量.如图4,在平面直角坐标系xOy中,点B是反比例函数y=
3x
的图象在第一象限内的一个动点,点B关于y轴的对称点为C,将点C沿平行于y轴的方向向下平移到点B′.
①若点B(1,3)与B′关于y轴的滑动对称变换的特征量为[m,m+4],判断点B′是否在此函数的图象上,为什么?
②已知点B与B′关于y轴的滑动对称变换的特征量为[d,s],且不论点B如何运动,点B′也都在此函数的图象上,判断s与d是否存在函数关系?如果是,请写出s关于d的函数关系式.

查看答案和解析>>

同步练习册答案