精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为线段AB上一动点(不与A,B重合),将直线OP绕点P逆时针方向旋转90°交直线BC于点Q;
(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;
(2)线段AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m的函数解析式,并求出l的最小值.
分析:(1)根据已知利用相似三角形的判定得到△AOP∽△BPQ,再根据相似三角形的对应边成比例即可得到OA•BQ=AP•BP;
(2)因为△POQ是等腰三角形所以PO=PQ,根据等式PA2+AO2=PB2+BQ2可求得m的值,从而就可确定点P的坐标;
(3)由第一问可求得BQ的值,从而求得l=3-
4m-m2
3
,所以可得到当m=2时,l有最小值求出即可.
解答:解:(1)证明:∵PO⊥PQ,
∴∠APO+∠BPQ=90°,
在Rt△AOP中,∠APO+∠AOP=90°,
∴∠BPQ=∠AOP,
又∵∠OAB=∠PBQ=90°,
∴△OAP∽△PBQ,
AP
OA
=
BQ
BP
,即OA•BQ=AP•BP.

(2)∵△POQ是等腰三角形,
①若P在线段AB上,
∵∠OPQ=90°,
∴PO=PQ,又△OAP∽△PBQ,
∴△OAP≌△PBQ
∴PB=AO,即3=4-m,
∴m=1,即P点坐标(1,3);
②若P在线段AB的延长线上,PQ交CB的延长线于Q,PO=PQ,
又∵△AOP∽△BPQ,
∴△AOP≌△BPQ,
∴AO=PB,即3=m-4,即P点的坐标(7,3);
③当P在线段BA的延长线上时,显然不成立;
故存在P1(1,3),P2(7,3)使△POQ为等腰三角形;

(3)解:∵由(1)知,OA•BQ=AP•BP,OA=3,AP=m,BP=4-m,
∴BQ=
m(4-m)
3

∴l=3-
4m-m2
3

=
1
3
(m2-4m+4)+
5
3

=
1
3
(m-2)2+
5
3

∴当m=2时,l有最小值.
点评:本题考查的是相似形综合题,涉及到相似三角形的判定与性质、全等三角形的判定与性质及二次函数的最值问题,涉及面较广,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案