【题目】如图,正方形
、等腰
的顶点
在对角线
上(点
与
、
不重合),
与
交于
,
延长线与
交于点
,连接
.
(1)求证:
.
(2)求证:![]()
(3)若
,求
的值.
![]()
【答案】(1)证明见解析;(2)证明见解析;(3)
.
【解析】
(1)证出∠ABP=∠CBQ,由SAS证明△ABP≌△CBQ可得结论;
(2)根据正方形的性质和全等三角形的性质得到
,∠APF=∠ABP,可证明△APF∽△ABP,再根据相似三角形的性质即可求解;
(3)根据全等三角形的性质得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根据三角函数和已知条件得到
,由(2)可得
,等量代换可得∠CBQ=∠CPQ即可求解.
(1)∵
是正方形,
∴
,
,
∵
是等腰三角形,
∴
,
,
∴
,
∴
,
∴
;
(2)∵
是正方形,
∴
,
,
∵
是等腰三角形,
∴
,
∵
,
∵
,
∴
,
∴
,
∴
,
∴
,
∴
,
;
(3)由(1)得
,
,
,
∴
,
由(2)
,
∴
,
∵
,
∴
,
在
中,
,
∴![]()
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,点H,E,F分别在边AB,BC,CD上,AE⊥HF于点G.
(1)如图1,求证:AE=HF;
(2)如图2,延长FH,交CB的延长线于M,连接AC,交HF于N.若MB=BE,EC=2BE,求
的值;
(3)如图3,若AB=2,BH=DF,将线段HF绕点F顺时针旋转90°至线段MF,连接AM,则线段AM的最小值为 .(直接写出结果)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2k-1)x+k2=0有两个实根x1和x2
(1) 求实数k的取值范围
(2) 若方程两实根x1、x2满足x12-x22=0,求k的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市茶叶专卖店销售某品牌茶叶,其进价为每千克240元,按每千克400元出售,平均每周可售出200千克,后来经过市场调查发现,单价每降低10元,则平均每周的销售量可增加40千克,若该专卖店销售这种品牌茶叶要想平均每周获利41600元,求每千克茶叶应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一副含
和
角的三角板
和
拼合在一个平面上,边
与
重合,
.当点
从点
出发沿
方向滑动时,点
同时从点
出发沿射线
方向滑动.当点
从点
滑动到点
时,点
运动的路径长为______
.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是等边三角形ABC内一点,且PA=3,PB=4, PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+2x+m的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P.
(1)求点B的坐标;
(2)求点P的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )
A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com