精英家教网 > 初中数学 > 题目详情
已知如图抛物线l1与x轴的交点的坐标为(-1,0)和(-5,0),与y轴的交点坐标为(0,2.5).
(1)求抛物线l1的解析式;
(2)抛物线l2与抛物线l1关于原点对称,现有一身高为1.5米的人撑着伞与抛物线l2的对称轴重合,伞面弧AB与抛物线l2重合,头顶最高点C与伞的下沿AB在同一条直线上(如图所示不考虑其他因素),如果雨滴下降的轨迹是沿着直线y=mx+b运动,那么不被淋到雨的m的取值范围是多少?
(3)将伞的下沿AB沿着抛物线l2对称轴上升10厘米至A1B1,A1B1比AB长8厘米,抛物线l2除顶点M不动外仍经过弧A1B1(其余条件不变),那么被雨淋到的几率是扩大了还是缩小了,说明理由.
(1)由于抛物线l1经过(-1,0),(-5,0),(0,2.5),
设其解析式为:y=a(x+1)(x+5),则有:
a(0+1)(0+5)=2.5,即a=0.5;
∴抛物线l1:y=0.5(x+1)(x+5)=0.5x2+3x+2.5.

(2)∵抛物线l1:y=0.5(x+3)2-2,且抛物线l1、l2关于原点对称,
∴抛物线l2:y=-0.5(x-3)2+2=-0.5x2+3x-2.5;
当y=1.5时,-0.5x2+3x-2.5=1.5,
整理得:x2-6x+8=0,
解得x=2,x=4;
即A(2,1.5),B(4,1.5),M(3,2);
设抛物线的对称轴与x轴的交点为N,则N(3,0);
则直线AN的斜率:k1=
0-1.5
3-2
=-1.5,
直线BN的斜率:k2=
0-1.5
3-4
=1.5;
若要不被雨淋到,m的取值范围为:-1.5<m<1.5.

(3)由题意知:tan∠A1NC=
1.04
1.6
=
13
20
=
39
60

tan∠ANC=
1
1.5
=
2
3
=
40
60

故∠A1NC<∠ANC,∠A1NB1<∠ANB,
所以被雨淋到的几率增大了.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3)则此抛物线对此函数的表达式为(  )
A.y=x2+2x+3B.y=x2-2x-3C.y=x2-2x+3D.y=x2+2x-3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(2,0),B(5,3).
(1)求m的值和抛物线的解析式;
(2)求不等式ax2+bx+c≤x+m的解集(直接写出答案);
(3)若抛物线与y轴交于C,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6)一辆宽6m的货车要通过跨度为8m、拱高为4m的单行抛物线隧道(从正中通过),为了保证安全,车顶离隧道顶部至少要t.6m的距离,货车的限高为多少?
(6)若将(6)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,货车的限高应是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D,连接BC,BC与抛物线的对称轴交于点E.
(1)求点B、点C的坐标和抛物线的对称轴;
(2)求直线BC的函数关系式;
(3)点P为线段BC上的一个动点,过点P作PFDE交抛物线于点F.设点P的横坐标为m;用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球飞行的水平距离s(米)与其距地面高度h(米)之间的关系式为h=-
1
12
s2+
2
3
s+
3
2
.如图,已知球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为
9
4
米,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是(  )
A.5<m<9B.5<m<4+
7
C.4<m<8+
7
D.5<m<4-
7

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,一边靠校园围墙,其他三边用总长为40米的铁栏杆围成一个矩形花圃,设矩形ABCD的边AB为x米,面积为S平方米,要使矩形ABCD面积最大,则x的长为(  )
A.10米B.15米C.20米D.25米

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是(  )
A.6B.2
6
C.2
5
D.2
2
+2

查看答案和解析>>

同步练习册答案