经过
顶点
的一条直线,
.
分别是直线
上两点,且
.
(1)若直线
经过
的内部,且
在射线
上,请解决下面两个问题:
①如图1,若
,
,
则
;
(填“
”,“
”或“
”);
②如图2,若
,请添加一个关于
与
关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线
经过
的外部,
,请提出
三条线段数量关系的合理猜想(不要求证明).
![]()
(1)①
;
;
②所填的条件是:
.
证明:在
中,
.
,
.
又
,
.
又
,
,
.
,
.
又
,
.
(2)
.
【解析】(1)①由∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CF,EC=AF;又因为EF=CF-CE,所以EF=|BE-AF|;
②只有满足△BEC≌△CDA,才有①中的结论,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形内角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠α+∠BCA=180°.
(2)只要通过条件证明△BEC≌△CFA(可通过ASA证得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF.
科目:初中数学 来源:2008年初中毕业升学考试(浙江台州卷)数学(带解析) 题型:解答题
经过
顶点
的一条直线,
.
分别是直线
上两点,且
.
(1)若直线
经过
的内部,且
在射线
上,请解决下面两个问题:
①如图1,若
,
,
则
;
(填“
”,“
”或“
”);
②如图2,若
,请添加一个关于
与
关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线
经过
的外部,
,请提出
三条线段数量关系的合理猜想(不要求证明).![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
经过
顶点
的一条直线,
.
分别是直线
上两点,且
.
(1)若直线
经过
的内部,且
在射线
上,请解决下面两个问题:
①如图1,若
,
,
则
;
(填“
”,“
”或“
”);
②如图2,若
,请添加一个关于
与
关系的条件 ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线
经过
的外部,
,请提出
三条线段数量关系的合理猜想(不要求证明).
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com