【题目】经测算,某地气温
与距离地面的高度
有如下对应关系:
| 0 | 1 | 2 | 3 | 4 | 5 | … |
| 26 | 20 | 14 | 8 |
| -4 | … |
请根据上表,完成下面的问题.
(1)猜想:距离地面的高度每上升
,气温就下降______
;表中
______.
(2)气温
与高度
之间的函数关系式是______.
(3)求该地距离地面
处的气温.
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.
(1)在此运动过程中,∠BDA逐渐变 (填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD= .
(2)点D运动3s后到达图2位置,则CD= .此时△ABD和△DCE是否全等,请说明理由;
(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知
是等边三角形,
是
上一点,
绕点
逆时针旋转到
的位置.
(1)如图,旋转中心是 ,
;
(2)如图,如果
是
的中点,那么经过上述旋转后,点
转动了 度;
(3)如果点
为
边上的三等分点,且
的面积为
,那么四边形
的面积为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线AB:y=kx﹣2(k≠0)与反比例函数的图象相交于点A和点B(﹣4,2),直线l的解析式为:y=
x+b.
(1)求反比例函数和直线AB的解析式;
(2)若直线l恰好与反比例函数的图象仅仅交于一个点,求直线l的解析式;
(3)在(2)的条件下,如图,若直线l与反比例函数的图象交于第四象限的点C,求△ABC的面积.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究与发现:在△ABC中,∠B=∠C,点D在BC边上(点B、C除外),点E在AC边上,且∠ADE=∠AED,连接DE.
(1)如图①,若∠B=∠C=45,
①当∠BAD=60时,求∠CDE的度数;
②试猜想∠BAD与∠CDE的数量关系,并说明理由.
(2)深入探究:如图②,若∠B=∠C,但∠C≠45,其他条件不变,试探究∠BAD与∠CDE的数量关系.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=6
,BC的中点为D,将△ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG在旋转过程中,DG的最大值是_______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形 ABCD 的边长为 10,E 在 BC 边上运动,取 DE 的中点 G,EG 绕点 E 顺时针旋转90°得 EF,问 CE 长为多少时,A、C、F 三点在一条直线上( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD.
(1)猜想AC与⊙O的位置关系,并证明你的猜想;
(2)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com