精英家教网 > 初中数学 > 题目详情
(2006•株洲)如图,AE=AD,要使△ABD≌△ACE,请你增加一个条件是    .(只需要填一个你认为合适的条件)
【答案】分析:要使△ABD≌△ACE,已知AE=AD,∠BAD=∠CAE,还需要一个条件,加条件∠B=∠C,由ASA可证;加条件AB=AC或BE=CD,由SAS可得三角形全等;加条件∠AEC=∠BDA由ASA可得三角形全等.
解答:解:∵∠B=∠C,AE=AD,∠A=∠A,
∴△ABD≌△ACE.
故答案为:∠B=∠C.
点评:三角形本题考查了全等三角形的判定;全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件,再根据三角形全等的判定方法,看缺什么条件.
练习册系列答案
相关习题

科目:初中数学 来源:2011年九年级学业考试数学科适应性测试卷(解析版) 题型:解答题

(2006•株洲)如图:已知抛物线y=x2+x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2006•株洲)如图:已知抛物线y=x2+x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(08)(解析版) 题型:解答题

(2006•株洲)如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,又B,C两点的坐标分别为(0,b),(1,0).
(1)当b=3时,求经过B,C两点的直线的解析式;
(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求每种位置关系时b的取值范围.

查看答案和解析>>

科目:初中数学 来源:2010年贵州省六盘水市盘县响水中学中考数学模拟密卷(一)(解析版) 题型:解答题

(2006•株洲)如图:已知抛物线y=x2+x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年湖南省株洲市中考数学试卷(解析版) 题型:解答题

(2006•株洲)如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,又B,C两点的坐标分别为(0,b),(1,0).
(1)当b=3时,求经过B,C两点的直线的解析式;
(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求每种位置关系时b的取值范围.

查看答案和解析>>

同步练习册答案