精英家教网 > 初中数学 > 题目详情

阅读思考:我们思考解决一个数学问题,如果从某一角度用某种方法难以奏效时,不妨换一个角度去观察思考,换一种方法去处理,这样有可能使问题“迎刃而解”.
例如解方程:数学公式,这是一个高次方程,我们未学过其解法,难以求解.如果我们换一个角度(“已知”和“未知”互换),即将数学公式看做“未知数”,而将x看成“已知数”,则原方程可整理成:数学公式
b2-4ac=(-2x2-1)2-4x(x3+1)=4x2-4x+1=(2x-1)2
解得:数学公式1或数学公式
故方程可转化为一个一元一次方程数学公式和一个一元二次方程x2-x+1=数学公式,从而不难求得这个高次方程的解.
问题解决:
(1)上述解题过程中,用到的数学学习中常用的思想方法是
A、类比思想  B、函数思想  C、转化思想  D、整体思想
(2)解方程:数学公式

解:(1)将高次方程转化为一元一次方程和一元二次方程得出是转化思想;
故选:C;

(2)∵
∴x•3 2-(x2+1)•3+(x3+x)=0,
b2-4ac=(x2+1)2-4x(x3+x)=1>0,
解得:3=或3=
当3=时,解得:x=6,
当3=时,解得:x1=3-,x2=3+
经检验得出:x1=3-,x2=3+都是方程的解.
综上所述:方程的解为:x1=3-,x2=3+,x3=6.
分析:(1)根据将高次方程转化为一元一次方程和一元二次方程得出是转化思想;
(2)仿照例题将高次方程整理为关于3的一元二次方程即可得出答案.
点评:此题主要考查了高次方程的解法,利用已知将高次方程转化为一元一次方程和一元二次方程是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解题:一次数学兴趣小组的活动课上,师生有下面一段对话,请你阅读完后再解答下面问题:
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
学生甲:老师,先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有的知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:我发现方程中x2-x是整体出现的,最好不要去括号!
老师:很好.如果我们把x2-x看成一个整体,用y来表示,那么原方程就变成y2-8y+12=0.
全体同学:咦,这不是我们学过的一元二次方程吗?
老师:大家真会观察和思考,太棒了!显然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊.
老师:同学们,通常我们把这种方法叫做换元法.在这里,使用它最大的妙处在于降低了原方程的次数,这是一种很重要的转化方法.
全体同学:OK!换元法真神奇!
现在,请你用换元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一次数学兴趣小组的活动课上,师生有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-(x2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x2-x是整体出现的,最好不要去括号!
老师:很好,我们把x2-x看成一个整体,用y表示,即x2-x=y,那么原方程就变为y2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

在一次数学兴趣小组的活动课上,有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(
x
x-1
)2-4(
x
x-1
)+4=0

学生甲:老师,原方程可整理为
x2
(x-1)2
-
4x
x-1
+4=0
,再去分母,行得通吗?
老师:很好,当然可以这样做.
再仔细观察,看看这个方程有什么特点?还可以怎样解答?
学生乙:老师,我发现
x
x-1
是整体出现的!
老师:很好,我们把
x
x-1
看成一个整体,用y表示,即可设
x
x-1
=y,那么原方程就变为y2-4y+4=0.
全体学生:噢,等号左边是一个完全平方式?!方程可以变形成(y-2)2=0
老师:大家真会观察和思考,太棒了!显然y2-4y+4=0的根是y=2,那么就有
x
x-1
=2
学生丙:对啦,再解这两个方程,可得原方程的根x=2,再验根就可以了!
老师:同学们,通常我们把这种方法叫做换元法,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程(组):
(1)(
2x
x-1
)2-
4x
x-1
+1=0

(2)
6
x-y
+
4
x+y
=3
9
x-y
-
1
x+y
=1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一次数学兴趣小组的活动课上,有下面的一段对话,请你阅读完后再解答问题.
老师:同学们,今天我们来探索如下方程的解法:(
x
x-1
)2-4(
x
x-1
)+4=0

学生甲:老师,原方程可整理为
x2
(x-1)2
-
4x
x-1
+4=0
,再去分母,行得通吗?
老师:很好,当然可以这样做.
再仔细观察,看看这个方程有什么特点?还可以怎样解答?
学生乙:老师,我发现
x
x-1
是整体出现的!
老师:很好,我们把
x
x-1
看成一个整体,用y表示,即可设
x
x-1
=y,那么原方程就变为y2-4y+4=0.
全体学生:噢,等号左边是一个完全平方式?!方程可以变形成(y-2)2=0
老师:大家真会观察和思考,太棒了!显然y2-4y+4=0的根是y=2,那么就有
x
x-1
=2
学生丙:对啦,再解这两个方程,可得原方程的根x=2,再验根就可以了!
老师:同学们,通常我们把这种方法叫做换元法,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程(组):
(1)(
2x
x-1
)2-
4x
x-1
+1=0

(2)
6
x-y
+
4
x+y
=3
9
x-y
-
1
x+y
=1

查看答案和解析>>

同步练习册答案