精英家教网 > 初中数学 > 题目详情
如图,在直角△ABC中,AB=AC,AD=AE,∠BAD=30°,则∠EDC是(  )
分析:由∠BAC=90°,AB=AC,可知△ABC为等腰直角三角形,即∠B=45°,∠BAC=90°,已知∠BAD=30°,得∠DAE=90°-30°=60°,又因为AD=AE,则△ADE为等边三角形,∠ADE=60°,由外角的性质可求∠EDC的度数.
解答:解:∵在△ABC中,∠BAC=90°,AB=AC,
∴∠B=45°,
又∵∠BAD=30°,
∴∠DAE=90°-30°=60°,
而AD=AE,∴△ADE为等边三角形,则∠ADE=60°,
又∵∠EDC+∠ADE=∠B+∠BAD(外角定理),
即∠EDC=45°+30°-60°=15°.
故选:C.
点评:本题考查了等腰三角形的性质.关键是根据等边三角形的判定与性质以及外角定理解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°、AB=6、AC=3,⊙O与边AB相切于点D、与边AC交于点E,连接DE,若DE∥BC,AE=2EC,则⊙O的半径是
2
3
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于F,且BE平分∠ABC,则∠A=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于点D,DE垂直平分AB.
(1)求∠B的度数;
(2)若DC=1,求DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.在直角△ABC中,已知∠ACB=90°,CD⊥AB于点D,则下列关系不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角△ABC中,∠A=90°,BC边上的垂直平分线交AC于点D;BD平分∠ABC,已知AC=m+2n,BC=2m+2n,则△BDE的周长为
2m+3n
2m+3n
(用含m,n字母表示).

查看答案和解析>>

同步练习册答案