精英家教网 > 初中数学 > 题目详情
如图,△ABC是等腰三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离等于1,将△ABC绕点O顺时针旋转45°得到△A1B1C1,两三角形的公共部分为多边形KLMNPQ.
①证明:△AKL,△BMN,△CPQ都是等腰直角三角形.
②求证:△ABC与△A1B1C1公共部分的面积.
证明:①连接OC、OC1,分别交PQ、NP于点D、E,根据题意得∠COC1=45°.
∵点O到AC和BC的距离都等于1,
∴OC是∠ACB的平分线.
∵∠ACB=90°∴∠OCE=∠OCQ=45°
同理∠OC1D=∠OC1N=45°
∴∠OEC=∠ODC1=90°
∴∠CQP=∠CPQ=∠C1PN=∠C1NP=45°
∴△CPQ和△C1NP都是等腰直角三角形.
∴∠BNM=∠C1NP=45°∠A1QK=∠CQP=45°,
∵∠B=45°∠A1=45°,
∴△BMN和△A1KQ都是等腰直角三角形.
∴∠B1ML=∠BMN=90°,∠AKL=∠A1KQ=90°
∴∠B1=45°∠A=45°
∴△B1ML和△AKL也都是等腰直角三角形.

②在Rt△ODC1和Rt△OEC中,
∵OD=OE=1,∠COC1=45°
∴OC=OC1=
2

∴CD=C1E=
2
-1
∴PQ=NP=2(
2
-1)=2
2
-2,CQ=CP=C1P=C1N=
2
2
-1)=2-
2

S△CPQ=
1
2
×(2-
2
)2=3-2
2

延长CO交AB于H
∵CO平分∠ACB,且AC=BC
∴CH⊥AB,
∴CH=CO+OH=
2
+1
∴AC=BC=A1C1=B1C1=
2
2
+1)=2+
2

S△ABC=
1
2
×(2+
2
)2=3+2
2

∵A1Q=BN=(2+
2
)-(2
2
-2)-(2-
2
)=2,
∴KQ=MN=
2
2
=
2

S△BMN=
1
2
×(
2
)2=1

∵AK=(2+
2
)-(2-
2
)-
2
=
2

S△AKL=
1
2
×(
2
)2=1

S多边形KLMNPQ=S△ABC-S△CPQ-S△BMN-S△AKL
=(3+2
2
)-(3-2
2
)-1-1
=4
2
-2

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,点C将线段AB分成两部分,如果
AC
AB
=
BC
AC
,那么称点C为线段AB的黄金分割点.
(1)某研究小组在进行课题学习时,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果
S1
S
=
S2
S1
,那么称直线l为该图形的黄金分割线.(如图2)
问题.试在图3的梯形中画出至少五条黄金分割线,并说明理由.
(2)类似“黄金分割线”得“黄金分割面”定义:截面a将一个体积为V的图形分成体积为V1、V2的两个图形,且
V1
V
=
V2
V1
,则称直线a为该图形的黄金分割面.
问题:如图4,长方体ABCD-EFGH中,T是线段AB上的黄金分割点,证明经过T点且平行于平面BCGF的截面QRST是长方体的黄金分割面.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为16
3
厘米,则第①个等腰直角三角形的斜边长为______厘米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知三角形的三边长分别为
21
、5、2,则该三角形最长边上的中线长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求证:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2
2
.求∠ACD的度数;
(3)在(2)的条件下,直接写出DE的长为______.(只填结果,不用写出计算过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知如图,ADBC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为(  )
A.1B.2C.5D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,∠C=90°,∠B=15°,AC=2cm,分别以A、B两点为圆心,大于
1
2
AB的长为半径画弧,两弧分别相交于E、F两点,直线EF交BC于点D,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,∠C=90°,D是边AC上的点,AD=DB=2a,∠A=15°,则BC边的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE中点,连接MD,若BD=2,CD=1.则MD的长为______.

查看答案和解析>>

同步练习册答案