【题目】如图,从左到右,在每个小个子都填入一个整数,使得其中任意三个相邻各自中所填整数之和都相等.
![]()
(1)可求得x= ;第2019个格子中的数为 ;
(2)判断:前m个格子中所填整数之和是否可能为2023?若能,求出m的值;若不能,请说明理由;
(3)如果a,b为前三个格子中的任意两个数,那么所有的|a-b|的和可以通过计算:|9-&|+|9-#|+|&-#|+|&-9|+|#-9|+|#-&|得到,若a,b为前7个格子中的任意两个数,则所有的|a-b|的和为 .
【答案】(1)9;2;(2)可能;m=1214;理由见解析;(3)732
【解析】
(1)根据“任意三个相邻格子中所填整数之和都相等”可知此表是由三个整数重复排列而成,便可求得x和&、#的值,再观察这组数,可发现每三个数循环一次,则
得出第2019个格子中的数;
(2)先计算出三个数的和,再根据规律计算即可,也可求出m的值;
(3)由于是三个数重复出现,因此可用前三个数的重复出现的次数进行计算.
解:(1)根据“任意三个相邻格子中所填整数之和都相等”可知此表是由三个整数重复排列而成,而表格中给出的9,-6和2,因此就是这三个数重复出现,且必须是按9,-6,2这样的顺序重复才能符合要求,故x的值是9;
,得第2019个格子中的数是2;
故答案为:9;2;
(2)
,
,且
,
故前m个格子中所填数字之和可能为2023;
m的值为:
404×3+2=1214;
(3)由于是三个数重复出现,那么前7个格子中,这三个数中,9出现了三次,-6和2都出现了2次,故代入式子可得:
故答案为:732
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年俄罗斯世界杯组委会对世界杯比赛用球进行抽查,随机抽取了100个足球,检测每个足球的质量是否符合标准,超过或不足部分分别用正、负数来表示,记录如表:
与标准质量的差值(单位:克) | ﹣4 | ﹣2 | 0 | 1 | 3 | 6 |
个数 | 10 | 13 | 30 | 25 | 15 | 7 |
(1)平均每个足球的质量比标准质量多还是少?用你学过的方法合理解释;
(2)若每个足球标准质量为420克,则抽样检测的足球的总质量是多少克?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为_________cm.
![]()
(第16题图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图(a)是正方形纸板制成的一副七巧板.
(1)请你在图(a)中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:
条件1:编号为①~③的三小块可以拼成一个轴对称图形;
条件2:编号为④~⑥的三小块可以拼成一个中心对称图形;
条件3:编号为⑦的小块是中心对称图形.
(2)请你在图(b)中画出编号为①~③的三小块拼出的轴对称图形;在图(c)中画出编号为④~⑥的三小块拼出的中心对称图形.(注意:没有编号不得分)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,下列结论:
①若C、O两点关于AB对称,则OA=2
;
②C、O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为
;
其中正确的是_____(把你认为正确结论的序号都填上).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一种西装和领带,西装每套定价400元,领带每条定价50元.国庆节期间商场决定开展促销活动,活动期间向客户提供两种优惠方案, 两种优惠方案可以任意选择:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.
现某客户要到该商场购买西装20套,领带x
.
(1)若该客户按方案一购买,需付款 元(用含x的式子表示),
若该客户按方案二购买,需付款 元(用含x的式子表示)
(2)若
,通过计算说明此时按哪种方案购买较为合算;
(3)当
时,你能给出一种更为省钱的购买方法吗?试写出你的购买方法和所需费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
![]()
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为![]()
![]()
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com