精英家教网 > 初中数学 > 题目详情
当a=
1
1
a-1
2
的相反数仍是
a-1
2
分析:根据互为相反数的两个数的和等于0列式求解即可.
解答:解:∵
a-1
2
的相反数仍是
a-1
2

a-1
2
+
a-1
2
=0,
∴a=1.
故答案为:1.
点评:本题考查了相反数的定义,是基础题,熟记概念并列出方程是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图1,梯形ABCD中,AD∥BC,BC=a,AD=b,点E、F分别是两腰AB、CD上的点,且EF∥AD,设AE=d1、BE=d2
研究、发现:
(1)当
d1
d2
=
1
1
时,有EF=
a+b
2

d1
d2
=
1
2
时,有EF=
a+2b
3

d1
d2
=
1
3
时,有EF=
a+3b
4

(2)当
d1
d2
=
2
1
时,有EF=
2a+b
3
;当
d1
d2
=
3
1
时,有EF=
3a+b
4

d1
d2
=
4
1
时,有EF=
4a+b
5

填空:①当
d1
d2
=
1
4
时,有EF=
 
;当
d1
d2
=
1
n
时,EF=
 

猜想、证明
d1
d2
=
m
1
时,分别能得到什么结论(其中m、n均为正整数)并证明你的结论;精英家教网
③进一步猜想当
d1
d2
=
m
n
时,有何结论(其中m、n均为正整数)写出你的结论.
解决问题
(3)如图2,有一块梯形木框ABCD,AD∥BC,AD=1米,BC=3米,AB=5米,要在中间加两个横档.操作如下:在AD上取两点E、F,使AE=2米,EF=1.5米,分别从E、F两处做与两底平行的横档EM、FN,求需要木条的总长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,A精英家教网E=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.
(1)求y关于x的函数解析式,并写出定义域;
(2)当AD=11时,求AG的长;
(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•达州)【问题背景】
若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x,面积为s,则s与x的函数关系式为:s=-x2+
1
2
x(x
>0),利用函数的图象或通过配方均可求得该函数的最大值.
【提出新问题】
若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少?
【分析问题】
若设该矩形的一边长为x,周长为y,则y与x的函数关系式为:y=2(x+
1
x
)
(x>0),问题就转化为研究该函数的最大(小)值了.
【解决问题】
借鉴我们已有的研究函数的经验,探索函数y=2(x+
1
x
)
(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=2(x+
1
x
)
(x>0)的图象:
 x  
1
4
 
1
3
 
1
2
 1  2  3  4
 y              
(2)观察猜想:观察该函数的图象,猜想当x=
1
1
时,函数y=2(x+
1
x
)
(x>0)有最
值(填“大”或“小”),是
4
4

(3)推理论证:问题背景中提到,通过配方可求二次函数s=-x2+
1
2
x(x
>0)的最大值,请你尝试通过配方求函数y=2(x+
1
x
)
(x>0)的最大(小)值,以证明你的猜想.〔提示:当x>0时,x=(
x
)2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南昌模拟)绘制函数y=x+
1
x
的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0; 列表--描点--连线,得到该函数的图象如图所示.
x -4 -3 -2 -1 -
1
2
-
1
3
-
1
4
1
4
1
3
1
2
1 2 3 4
y -4
1
4
-3
1
3
-2
1
2
-2 -2
1
2
-3
1
3
-4
1
4
4
1
4
3
1
3
2
1
2
2 2
1
2
3
1
3
4
1
4
观察函数图象,回答下列问题:
(1)函数图象在第
一、三
一、三
象限;
(2)函数图象的对称性是
C
C

A.既是轴对称图形,又是中心对称图形     B.只是轴对称图形,不是中心对称图形
C.不是轴对称图形,而是中心对称图形     D.既不是轴对称图形,也不是中心对称图形
(3)在x>0时,当x=
1
1
时,函数y有最
(大,小)值,且这个最值等于
2
2

在x<0时,当x=
-1
-1
时,函数y有最
(大,小)值,且这个最值等于
-2
-2

(4)方程x+
1
x
=-2x+1
是否有实数解?说明理由.

查看答案和解析>>

同步练习册答案