精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.
(1)求证:四边形AFHD为平行四边形;
(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数.

【答案】分析:(1)证明AD∥BC,AD=BC,FH∥BC,FH=BC.
(2)∠CBE是等腰△CBE的底角,求出顶角∠ECD即可.
解答:证明:(1)∵BF=BE,CG=CE,∴BCFG,
又∵H是FG的中点,
∴FH=FG.
∴BCFH.
又∵四边形ABCD是平行四边形,
∴ADBC.
∴ADFH.
∴四边形AFHD是平行四边形.

(2)∵四边形ABCD是平行四边形,∠BAE=60°,
∴∠BAE=∠DCB=60°.
又∵∠DCE=20°,
∴∠ECB=∠DCB-∠DCE=60°-20°=40°.
∵CE=CB,
∴∠CBE=∠BEC=(180°-∠ECB)=(180°-40°)=70°.
点评:(1)考查平行四边形的判定方法,具体选用哪种方法,需要根据已知条件灵活选择.
(2)把所求角与已知角集中到同一个三角形中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案