精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系内,一次函数y=kx+m(k,m是常数,k≠0)的图象与反比例函数y=数学公式(n是常数,n≠0,x>0)的图象相交于A(1,4)、B(a,b)两点,其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB.
(1)求n的值;
(2)若△ABD的面积为6,求一次函数y=kx+m的关系式.

解:(1)将A(1,4)代入y=,得n=4.

(2)∵A(1,4)、B(a,b)在反比例函数图象上,
∴ab=4.
∴S△ABD=a(4-b)=2a-ab=2a-2=6.
∴a=4,B点坐标为(4,1).
将A(1,4)、B(4,1)代入y=kx+m得
解得
∴一次函数的关系式为y=-x+5.
分析:(1)根据函数图象上的点符合函数解析式,将A(1,4)代入y=即可求出n的值;
(2)先根据A、B两点在反比例函数的图象上可求出ab的值,再根据三角形的面积公式可求出a的值,进而可得出B点坐标,由A、B两点的坐标即可求出一次函数y=kx+m的解析式.
点评:本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点及用待定系数法求反比例函数的解析式,熟知以上知识是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案