精英家教网 > 初中数学 > 题目详情
A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.

【答案】分析:首先过C作CD⊥AB与D,由题意得:∠ACD=α,∠BCD=β,即可得在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,继而可得CD•tanα+CD•tanβ=AB,则可求得CD的长,即可知连接AB高速公路是否穿过风景区.
解答:解:AB不穿过风景区.理由如下:
如图,过C作CD⊥AB于点D,
根据题意得:∠ACD=α,∠BCD=β,
则在Rt△ACD中,AD=CD•tanα,在Rt△BCD中,BD=CD•tanβ,
∵AD+DB=AB,
∴CD•tanα+CD•tanβ=AB,
∴CD==(千米).
∵CD=50>45,
∴高速公路AB不穿过风景区.
点评:此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北荆门卷)数学(解析版) 题型:解答题

A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB高速公路是否穿过风景区,请说明理由.

查看答案和解析>>

同步练习册答案