精英家教网 > 初中数学 > 题目详情

【题目】如图,将一张矩形纸片ABCD折叠,使顶点C落在C′处,测量得AB=4,DE=8,则sin∠C′ED为(
A.2
B.
C.
D.

【答案】B
【解析】解:解:∵△CDE≌△C′DE, ∴C′D=CD.
∵AB=4,DE=8,
∴C′D=4.
∴sin∠C'ED= = =
故选B.
【考点精析】关于本题考查的翻折变换(折叠问题)和解直角三角形,需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )
A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查
B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95
C.“打开电视,正在播放乒乓球比赛”是必然事件
D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣2)2 +(﹣3)0﹣( 2
(2) ÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E是边AB的中点,连接DE,△ADE沿DE折叠后得到△FDE,点F在矩形ABCD的内部,延长DF交于BC于点G.

(1)求证:FG=BG;
(2)若AB=6,BC=4,求DG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线y=﹣ x﹣3与坐标轴交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴交于点B(2,0).

(1)求抛物线的解析式;
(2)点D是抛物线在第三象限图象上的动点,是否存在点D,使得△DAC的面积最大?若存在,请求这个最大值并求出点D的坐标;若不存在,请说明理由;
(3)过点D作DE⊥x轴于E,交AC于F,若AC恰好将△ADE的面积分成1:4两部分,请求出此时点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于(
A.70°
B.100°
C.110°
D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的 后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.
(1)按原计划完成总任务的 时,已抢修道路米;
(2)求原计划每小时抢修道路多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

同步练习册答案