如图,在平面直角坐标系中,抛物线
=-![]()
![]()
+![]()
+
,经过A(0,-4)、B(![]()
,0)、 C(![]()
,0)三点,且![]()
-![]()
=5.
(1)求
、
的值;
(2)在抛物线上求一点D,使得四边形BDCE是以
BC为对角线的菱形;
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.
![]()
(1)解法一:∵抛物线
=-![]()
![]()
+![]()
+
经过点A(0,-4),∴
=-4
又由题意可知,![]()
、![]()
是方程-![]()
![]()
+![]()
+
=0的两个根,
∴![]()
+![]()
=![]()
, ![]()
![]()
![]()
=-![]()
=6
由已知得(![]()
-![]()
)
=25又(![]()
-![]()
)
=(![]()
+![]()
)
-4![]()
![]()
![]()
=![]()
![]()
-24
∴ ![]()
![]()
-24=25 ,解得![]()
=±
当
=
时,抛物线与
轴的交点在
轴的正半轴上,不合题意,舍去.
∴
=-
.
解法二:∵![]()
、![]()
是方程-![]()
![]()
+![]()
+c=0的两个
根,
即方程2![]()
-3![]()
+12=0的两个根.∴
=
,
∴![]()
-![]()
=
=5, 解得
=±
(以下与解法一相同.) (3分)
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 又∵
=-![]()
![]()
-![]()
-4=-
(
+
)
+
∴抛物线的顶点(-
,
)即为所求的点D. (3分)
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线
=-3与
抛物线
=-![]()
![]()
-![]()
-4的交点,
∴当
=-3时,
=-
×(-3)
-
×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形.
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是
(-3,3),但这一点不在抛物线上.
科目:初中数学 来源: 题型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com