精英家教网 > 初中数学 > 题目详情

当m的值为________时,式子数学公式的值为0.

2
分析:先根据题意列出方程,再去分母、移项、化系数为1,从而得到m的值.
解答:根据题意有=0,
得:2m-4=0
∴m=2;
故当m的值为2时,式子的值为0.
点评:本题实质上考查解一元一次方程,解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

当m的值为
 
时,式子
2m-43
的值为0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•椒江区一模)请仔细阅读下面两则材料,然后解决问题:
材料1:小学时我们学过,任何一个假分数都可以化为一个整数与一个真分数的和的形式,同样道理,任何一个分子次数不低于分母次数的分式都可以化为一个整式与另一个分式的和(或差)的形式,其中另一个分式的分子次数低于分母次数.
x2-2x-4
x-1
=
(x2-x)+(-x+1)+(-5)
x-1
=(x-1)-
5
x-1

如:对于式子2+
3
1+x2
,因为x2≥0,所以1+x2的最小值为1,所以
3
1+x2
的最大值为3,所以2+
3
1+x2
的最大值为5.根据上述材料,解决下列问题:问题1:把分式
4x2+8x+7
1
2
x2+x+1
 化为一个整式与另一个分式的和(或差)的形式,其中另一
4x2+8x+7
1
2
x2+x+1
个分式的分子次数低于分母次数.
问题2:当x的值变化时,求分式8-
2
(x+1)2+1
的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南平)在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m>0),将此矩形绕O点逆时针旋转90°,得到矩形OA′B′C′.
(1)写出点A、A′、C′的坐标;
(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)
(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值.

查看答案和解析>>

科目:初中数学 来源:2012年福建省南平市中考数学试卷(解析版) 题型:解答题

在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m>0),将此矩形绕O点逆时针旋转90°,得到矩形OA′B′C′.
(1)写出点A、A′、C′的坐标;
(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)
(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值.

查看答案和解析>>

同步练习册答案