精英家教网 > 初中数学 > 题目详情
二次函数y=ax2+bx+c的部分图象如图所示,其中图象与x轴交于点A(-1,0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式;
(2)将此二次函数的解析式写成y=a(x-h)2+k的形式,并直接写出此二次函数图象的顶点坐标以及它与x轴的另一个交点B的坐标.
(1)根据题意得,
a-b+c=0①
c=-5②
9a+3b+c=-8③

②分别代入①、③得,
a-b=5④,
3a+b=-1⑤,
④+⑤得,4a=4,
解得a=1,
把a=1代入④得,1-b=5,
解得b=-4,
∴方程组的解是
a=1
b=-4
c=-5

∴此二次函数的解析式为y=x2-4x-5;

(2)y=x2-4x-5=x2-4x+4-4-5=(x-2)2-9,
二次函数的解析式为y=(x-2)2-9,
顶点坐标为(2,-9),
对称轴为x=2,
设另一点坐标为B(a,0),
则-1+a=2×2,
解得a=5,
∴点B的坐标是B(5,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:矩形OABC中,A(6,0),B(6,4),F为AB边的中点,直线EF交边BC于E,且sin∠BEF=
5
5
,P为线段EF上一动点,PM⊥OA于M,PN⊥OC于N.
(1)求直线EF的函数解析式并注明自变量取值范围;
(2)求矩形ONPM的面积的最大值及此时点P的坐标;
(3)矩形ONPM、矩形OABC有可能相似吗?若相似,求出此时点P的坐标;若不相似,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C(0,-3)与x轴正半轴相交于点B,且OB=OC.
①求B点坐标;
②求函数的解析式及最小值;
③写出y随x的增大而减小的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=______;
(2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.
(1)求该抛物线的解析式.
(2)若过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点E(x1,y1)、F(x2,y2)在抛物线y=ax2+bx+c的对称轴的同侧(点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD与x轴、直线y=2ax+b所围成图形的面积.则S与y1、y2的数量关系式为:S=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

定义[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x,y轴的交点,其中m>0,且△OAB的面积为4,O为原点,求图象过A,B两点的一次函数的特征数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿的市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.

(1)写出图一表示的市场售价与时间的函数关系式P;写出图二表示的种植成本与时间的函数关系式Q;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

查看答案和解析>>

同步练习册答案