精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)试判断线段BD与CD的大小关系;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;
(3)若△ABC为直角三角形,且∠BAC=90°时,判断四边形AFBD的形状,并说明理由.
分析:(1)先证明△AFE≌△DCE,从而得到AF=CD,因为AF=BD,从而得解.
(2)根据三线合一可知道AD⊥BC,从而四边形是矩形.
(3)直角三角形斜边的中线是斜边的一半,从而AD=BD,四边形是菱形.
解答:解:(1)∵AF∥BC,
∴∠FAE=∠CDE,
在△AEF和△DEC中,
∠FAE=∠CDE
AE=DE
∠AEF=∠CED

∴△AEF≌△DEC(ASA),
∴AF=CD,
∵AF=BD,
∴BD=CD.

(2)∵AF∥BC,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD,
∴AD⊥BC,
∴四边形AFBD是矩形.

(3)∵∠BAC=90°,BD=CD,
∴BD=AD(直角三角形斜边的中线是斜边的一半).
∵四边形AFBD是平行四边形,
∴四边形AFBD是菱形.
点评:本题考查平行四边形的判定,全等三角形的判定和性质,矩形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案