精英家教网 > 初中数学 > 题目详情
如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行(  )
A.8米B.10米C.12米D.14米
B.

试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出:
如图,设大树高为AB=10米,小树高为CD=4米,
过C点作CE⊥AB于E,则EBDC是矩形,连接AC,
∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6m米,
在Rt△AEC中,(米).
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则∠MND的度数为   °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在Rt△ABC中,∠ABC=90°∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.
(1)求证:GE=GF
(2)若BD=1,求DF的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F.
(1)求证:四边形BCFE是菱形;
(2)若,求菱形BCFE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC点E,垂足为点D,连接BE,则∠EBC的度数为         °.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于(  )
A.60mB.40mC.30mD.20m

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,O为ABCD两对角线的交点,图中全等的三角形有(   ) 
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在D’处,若AB=3,AD=4,则ED的长为 (    )
A.B.3C.1D.

查看答案和解析>>

同步练习册答案