如图,在平面直角坐标系中,已知点
坐标为(2,4),直线
与
轴相交于点
,连结
,抛物线
从点
沿
方向平移,与直线
交于点
,顶点
到
点时停止移动.![]()
(1)求线段
所在直线的函数解析式;
(2)设抛物线顶点
的横坐标为
,当
为何值时,线段
最短;
(3)当线段
最短时,相应的抛物线上是否存在点
,使△
的面积与△
的面积相等,若存在,请求出点
的坐标;若不存在,请说明理由.
(1)
;(2)当
时,PB最短;(3)抛物线上存在点
,![]()
使△
与△
的面积相等.
解析试题分析:解:(1)设
所在直线的函数解析式为
,
∵
(2,4),∴
,
,
∴
所在直线的函数解析式为
. 2分
(2)∵顶点M的横坐标为
,且在线段
上移动,
∴
(0≤
≤2).
∴顶点
的坐标为(
,
).
∴抛物线函数解析式为![]()
∴当
时,
(0≤
≤2).
∴
, 又∵0≤
≤2,
∴当
时,PB最短. 6分
(3)当线段
最短时,此时抛物线的解析式为
.
假设在抛物线上存在点
,使
. 设点
的坐标为(
,
).
①当点
落在直线
的下方时,过
作直线
//
,交
轴于点
,
∵
,
,
∴
,∴
,∴
点的坐标是(0,
).
∵点
的坐标是(2,3),∴直线
的函数解析式为
.
∵
,∴点
落在直线
上.
∴
=
.解得
,即点
(2,3).
∴点
与点
重合.
∴此时抛物线上不存在点
,使△
与△
的面积相等. 7分
②当点
落在直线
的上方时,
作点
关于点
的对称称点
,过
作直线
//
,交
轴于点
,
∵
,∴
,
∴、E、D的坐标分别是(0,1),(2,5),
∴直线
函数解析式为
.
∵
,∴点
落在直线
上.
∴
=
.
解得:
,
.
代入
科目:初中数学 来源: 题型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com