如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B作直线BF∥CD交AD的延长线于点F,若AB=10cm.![]()
(1)求证:BF是⊙O的切线.
(2)若AD=8cm,求BE的长.
(3)若四边形CBFD为平行四边形,则四边形ACBD为何种四边形?并说明理由.
解:(1)证明:∵CD⊥AB,BF∥CD,∴BF⊥AB。
又∵AB是⊙O的直径,∴BF是⊙O的切线。
(2)如图1,连接BD。![]()
∵AB是⊙O的直径,
∴∠ADB=90°(直径所对的圆周角是直角)。
又∵DE⊥AB,∴△ADE∽△ABD。
∴
。∴AD2=AE•AB。
∵AD=8cm,AB=10cm,∴AE=6.4cm。∴BE=AB﹣AE=3.6cm。
(3)若四边形CBFD为平行四边形,则四边形ACBD是正方形。理由如下:
连接BC。![]()
∵四边形CBFD为平行四边形,
∴BC∥FD,即BC∥AD。
∴∠BCD=∠ADC(两直线平行,内错角相等)。
∵∠BCD=∠BAD,∠CAB=∠CDB,(同弧所对的圆周角相等),
∴∠CAB+∠BAD=∠CDB+∠ADC,即∠CAD=∠BDA,
又∵∠BDA=90°(直径所对的圆周角是直角),∴∠CAD=∠BDA=90°。
∴CD是⊙O的直径,即点E与点O重合(或线段CD过圆心O)。
在△OBC和△ODA中,∵OC=OD,∠COB=∠DOA=90°,OB=OA,
∴△OBC≌△ODA(SAS)。∴BC=DA(全等三角形的对应边相等)。
∴四边形ACBD是平行四边形(对边平行且相等的四边形是平行四边形),
∵∠ACB=90°(直径所对的圆周角是直角),AC=AD,∴四边形ACBD是正方形。
解析
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:初中数学解题思路与方法 题型:047
已知如图,AB是半圆直经,△ACD内接于半⊙O,CE⊥AB于E,延长AD交EC的延长线于F,求证:AC·CD=AD·FC.
查看答案和解析>>
科目:初中数学 来源: 题型:单选题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com