精英家教网 > 初中数学 > 题目详情
(2005•哈尔滨)已知:如图,点O2是⊙O1上一点,⊙O2与⊙O1相交于A、D两点,BC⊥AD,垂足为D,分别交⊙O1、⊙O2于B、C两点,延长DO2交⊙O2于E,交BA延长线于F,BO2交AD于G,连接AD.
(1)求证:∠BGD=∠C;
(2)若∠DO2C=45°,求证:AD=AF;
(3)若BF=6CD,且线段BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根,求BD、BF的长.

【答案】分析:(1)运用直径所对圆周角=90°,等角的余角相等,对顶角相等证明;
(2)只需证明∠F=∠ADF即可.由A,B,D,O2四点共圆知∠ABD=∠DO2C=45°,∠BAD=45°,△DCO2中,O2C=O2D,顶角已知,求出底角∠O2DC的度数,∠ADF=90°-∠O2DC,∠F=∠O2DC-∠ABD,可知∠F=∠ABD;
(3)由已知条件,可以知道,首先应求出BD与CD的关系,这样BD与BF都用CD表示,再由根与系数的关系,求出m的值,回代方程,求出BD,BF的值,根据根的判别式进行检验.
解答:(1)证明:∵BC⊥AD于D,
∴∠BDA=∠CDA=90°,
∴AB、AC分别为⊙O1、⊙O2的直径,
∵∠2=∠3,∠BGD+∠2=90°,∠C+∠3=90°,
∴∠BGD=∠C;

(2)证明:∵∠DO2C=45°,
∴∠ABD=45°,
∵O2D=O2C,
∴∠C=∠O2DC=(180-∠DO2C)=67.5°,
∴∠4=22.5°,
∵∠O2DC=∠ABD+∠F,
∴∠F=∠4=22.5°,
∴AD=AF;

(3)解:∵BF=6CD,
∴设CD=k,则BF=6k,
连接AE,则AE⊥AD,
∴AE∥BC,
∴△FAE∽△FBD,

∴AE•BF=BD•AF,
又∵在△AO2E和△DO2C中,AO=DO2,∠AOE=∠DOC,O2E=O2C,
∴△AO2E≌△DO2C,
∴AE=CD=k,
∴6k2=BD•AF=(BC-CD)(BF-AB),
∵∠BO2A=90°,O2A=O2C,
∴BC=AB,
∴6k2=(BC-k)(6k-BC),
∴BC2-7kBC+12k2=0,
解得:BC=3k,或BC=4k,
当BC=3k时,BD=2k,
∵BD、BF的长是关于x的方程x2-(4m+2)x+4m2+8=0的两个实数根,
∴由根与系数的关系知:BD+BF=2k+6k=8k=4m+2,BD•BF=12k2=4m2+8,
∴k=+
把BD=2k代入方程x2-(4m+2)x+4m2+8=0可得,4m2-12m+29=0,
∵△=(-12)2-4×4×29=-320<0,此方程无实数根,
∴BC=3k舍去,
当BC=4k时,BD=3k,
∴3k+6k=4m+218k2=4m2+8,
整理,得:m2-8m+16=0,解得:m1=m2=4,
∴原方程可化为x2-18x+72=0,
解得:x1=6,x2=12,
∴BD=6,BF=12.
点评:(1)在圆中证明两个角相等时,通常将它们等量转化;
(2)证明两边相等时,如果两边在同一个三角形中,则证明它们所对的角相等;
(3)本问中有四个未知量,BF,CD,BD,m,而只有三个方程BF=6CD,根与系数的关系可以列出两个,所以要根据条件先求出BD与CD的关系,这样三个未知数,三个方程可以求出结果.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2005•哈尔滨)已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点.
(1)求抛物线的解析式及B的坐标;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2005•哈尔滨)甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)
(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?

查看答案和解析>>

科目:初中数学 来源:2010年湖北省黄石市九年级6月月考数学试卷(解析版) 题型:解答题

(2005•哈尔滨)已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点.
(1)求抛物线的解析式及B的坐标;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2005•哈尔滨)已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=-x2+bx+c经过点A、C,点B是抛物线与x轴的另一个交点.
(1)求抛物线的解析式及B的坐标;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年黑龙江省哈尔滨市中考数学试卷(解析版) 题型:解答题

(2005•哈尔滨)甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)
(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;
(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?

查看答案和解析>>

同步练习册答案