精英家教网 > 初中数学 > 题目详情

 “如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”

小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.

分析:模仿图①的证明可以完成图②的证明,仍然是证明BQ=CP所在的△AQB≌△APC,应用SAS定理达到目的.

证明:.即

中,

评注:考查同学们从具体、特殊的情形出发去探究运动变化过程中的规律的能力,试题的设计层层递进,为发现规律、证明结论设计了可借鉴的过程,通过前面问题解决过程中所提供的思想方法,去解决类似相关问题,考查了同学们的后续学习的能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即“以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即“以形助数”.
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC中,∠ACB=90°,CD⊥AB,D为垂足.易证得两个结论:(1)AC•BC=AB•CD   (2)AC2=AD•AB
(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC中(AC>BC),∠ACB=90°,CD⊥AB,D为垂足,CM平分∠ACB,且BC、AC是方程x2-14x+48=0的两个根,求AD、MD的长.
(2)请你用数形结合的“以形助数”思想来解:设a、b、c、d都是正数,满足a:b=c:d,且a最大.求证:a+d>b+c(提示:不访设AB=a,CD=d,AC=b,BC=c,构造图1)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区二模)(1)已知:如图1,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.求证:DE=DF.
(2)如图2,已知△ABC内接于⊙O,AC是⊙O的直径,D是
AB
的中点,过点D作直线BC的垂线,分别交CB,CA的延长线于E,F,求证:EF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)探索:请你利用图1验证勾股定理.
(2)应用:如图2,已知在Rt△ABC中,∠ACB=90°,AB=6,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2的值等于
9
2
π
9
2
π
.(请直接写出结果)
(3)拓展:如图3所示,MN表示一条铁路,A、B是两个城市,它们到铁路所在直线MN的垂直距离分别为AC=40千米,BD=60千米,且CD=80千米,现要在CD之间设一个中转站O,求出O应建在离C点多少千米处,才能使它到A、B两个城市的距离相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.
(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;
(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由

查看答案和解析>>

科目:初中数学 来源: 题型:

一节数学课后,老师布置了一道课后练习题:
如图1,已知在Rt△ABC中,AB=BC,∠ABC=90°,O为AC中点.
(1)如图1,若把三角板的直角顶点放置于点O,两直角边分别与AB、BC交于点M、N,求证:BM=CN;
(2)若点P是线段AC上一动点,在射线BC上找一点D,使PD=PB,再过点D作BO的平行线,交直线AC于一点E,试在备用图上探索线段ED和OP的关系,并说明理由.

查看答案和解析>>

同步练习册答案