精英家教网 > 初中数学 > 题目详情
24、在比较aa+1和(a+1)a的大小时(a是自然数),我们从分析a=1,a=2,a=3…这些简单情况入手,从中发现规律,经过归纳,再得出结论.
(1)①12
21,②23
32,③34
43,④45
54,…
(2)从第(1)题结果归纳,可猜出aa+1和(a+1)a的大小关系是怎样的?
(3)请比较一下20082009与20092008的大小.
分析:(1)先根据有理数乘方的定义求出各数的值,再根据有理数大小的比较法则进行比较;
(2)根据(1)中有理数的大小总结出规律;
(3)根据(2)中的规律直接得出结论.
解答:解:(1)①∵12=1,21=2,
∴12<21
②∵23=8,32=9,
∴23<32
③∵34=81,43=48,
∴34>43
④∵45=1024,54=625,
∴45,>54
故答案为:<,<,>,>;(4分)
(2)由(1)可知,
当1≤a≤2时(或a=1或2时),aa+1<(a+1)a,(6分)
当a>2时,aa+1>(a+1)a;(8分)
(3)∵a=2008>2,
∴20082009>20092008.(10分)
点评:本题考查的是有理数的大小比较及有理数的乘方,解答此题的关键是根据有理数比较大小的法则比较出(1)中各数的大小,总结出规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解,回答问题.
在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
例如:在比较m2+1与m2的大小时,小东同学的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2
请你参考小东同学的作法,解决如下问题:
(1)请你比较4
3
与(2+
3
2的大小;
(2)已知a、b为实数,且ab=1,设M=
a
a+1
+
b
b+1
,N=
1
a+1
+
1
b+1
,试比较M、N的大小;
(3)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大7岁,爸爸同事的年龄是小明年龄的5倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在比较aa+1和(a+1)a的大小时(a是自然数),我们从分析a=1,a=2,a=3…这些简单情况入手,从中发现规律,经过归纳,再得出结论.
(1)①12______21,②23______32,③34______43,④45______54,…
(2)从第(1)题结果归纳,可猜出aa+1和(a+1)a的大小关系是怎样的?
(3)请比较一下20082009与20092008的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在比较aa+1和(a+1)a的大小时(a是自然数),我们从分析a=1,a=2,a=3…这些简单情况入手,从中发现规律,经过归纳,再得出结论.
(1)①12______21,②23______32,③34______43,④45______54,…
(2)从第(1)题结果归纳,可猜出aa+1和(a+1)a的大小关系是怎样的?
(3)请比较一下20082009与20092008的大小.

查看答案和解析>>

科目:初中数学 来源:昌平区一模 题型:解答题

阅读理解,回答问题.
在解决数学问题的过程中,有时会遇到比较两数大小的问题,解决这类问题的关键是根据命题的题设和结论特征,采用相应办法,其中巧用“作差法”是解决此类问题的一种行之有效的方法:若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.
例如:在比较m2+1与m2的大小时,小东同学的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2
请你参考小东同学的作法,解决如下问题:
(1)请你比较4
3
与(2+
3
2的大小;
(2)已知a、b为实数,且ab=1,设M=
a
a+1
+
b
b+1
,N=
1
a+1
+
1
b+1
,试比较M、N的大小;
(3)一天,小明爸爸的男同事来家做客,已知爸爸的年龄比小明年龄的平方大7岁,爸爸同事的年龄是小明年龄的5倍,请你帮忙算一算,小明该称呼爸爸的这位同事为“叔叔”还是“大伯”?

查看答案和解析>>

同步练习册答案