精英家教网 > 初中数学 > 题目详情

(12分) 如图,在△ABC中,MENF分别垂直平分ABAC

 

 

 

 

 

(1)    若BC = 10 cm,试求△AMN的周长.

(2)    在△ABC中,AB = AC,∠BAC = 100°,求∠MAN的度数.

(3) 在 (2) 中,若无AB = AC的条件,你还能求出∠MAN的度数吗?若能,请求出;若不能,请说明理由.

 

【答案】

 

(1)cm

(2)

(3) 能,证明略。    

【解析】

解:(1) ∵ ME垂直平分AB

MA = MB·············································································· 1分

NF垂直平分AC

NA = NC··············································································· 2分

cm······················· 4分

(2) ∵ AB = AC

······································································· 4分

MA = MB

··································································· 5分

NA = NC

··································································· 6分

·········································· 8分

(3) 能.理由如下:·········································································· 9分

MA = MB

∴ ∠MAB =B

NA = NB

∴ ∠NAC =C

·································· 12分

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分)

如图,在平面直角坐标系中,抛物线与x轴的右交点为点A,与y

 

轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)

(1)求A,B,C三点的坐标和抛物线的顶点的坐标;

(2)当t为何值时,四边形PQCA为平行四边形?

(3)请说明当0<t<4.5时,△PQF的面积总为定值;

(4)当0≤t≤4.5是否存在△PQF为等腰三角形?当t为何值时,△PQF为等腰三角形?(直接写出结果)

 

查看答案和解析>>

科目:初中数学 来源:2010年湖北省黄冈市初一上学期期末模拟数学卷 题型:解答题

(本题满分12分)
如图,在△ABC中,AD平分∠BAC.

(1)若AC=BC,∠B︰∠C=2︰1,试写出图中的所有等腰三角形,并给予证明.
(2)若ABBD=AC,求∠B︰∠C 的比值

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(四川泸州卷)数学(解析版) 题型:解答题

(2013年四川泸州12分)如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).

(1)求抛物线的解析式;

(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;

(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)

 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(广东广州卷)数学解析版 题型:解答题

(2011广西梧州,26,12分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动.

(1)求CD的长;

(2)若点P以1cm/s速度运动,点Q以cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围;

(3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围.

 

查看答案和解析>>

科目:初中数学 来源:2010年四川省成都市温江区初三第一学期期末数学卷 题型:解答题

(本题满分12分)

如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.

(1)请完成如下操作:

①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系; ②根据图形提供的信息,标出该圆弧所在圆的圆心D,

   并连结AD、CD.

(2)请在(1)的基础上,完成下列填空:

①写出点的坐标:C         、D           

②⊙D的半径=            (结果保留根号);

③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为         ;(结果保留

(3)若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由

 

查看答案和解析>>

同步练习册答案