精英家教网 > 初中数学 > 题目详情
精英家教网如图,AB是⊙O直径,且AB=4cm,弦CD⊥AB,∠COB=45°,则CD为
 
cm.
分析:根据已知条件求得圆的半径OC=2;然后由垂径定理知CE=
1
2
CD;再在直角三角形OEC中利用勾股定理求得CE的值.
解答:精英家教网解:∵AB是⊙O直径,AB=4cm,
∴OC=
1
2
AB=2(半径是直径的一半);
∵AB是⊙O直径,CD⊥AB,
∴CE=
1
2
CD(垂径定理);
又∵∠COB=45°,
∴∠OCB=45°,
∴∠COB=∠OCB=45°,
∴OE=CE(等角对等边);
在直角三角形OCE中,OC2=OE2+CE2
∴CE=
OC2
2
=
2

∴CD=2
2

故答案为:2
2
点评:本题考查了垂径定理和勾股定理.解此类题目要注意将圆的问题转化成三角形的问题再进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.
(1)求证:CT为⊙O的切线;
(2)若⊙O半径为2,CT=
3
,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,BC是弦,OD⊥BC于E交弧BC于D.根据中考改编
(1)请写出四个不同类型的正确结论;
(2)连接CD、DB设∠CDB=α,∠ABC=β,你认为α=β+90°这个结论正确吗?若正确请证明过程.若不正确请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,C、D是⊙O上的两点,若∠BAC=20°,
AD
=
DC
,则∠DAC的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O直径,OB=6,弦CD=10,则弦心距OP的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O直径,弦CD交AB于E,∠AEC=45°,AB=2.设AE=x,CE2+DE2=y.下列图象中,能表示y与x的函数关系是的(  )

查看答案和解析>>

同步练习册答案