精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,∠ABC,∠ACB的平分线夹角为α,∠ABC的外角平分线与∠ACB的外角平分线的夹角为β,
(1)若α=110°,则∠A=______.
(2)若∠A=30°,则β=______.
(3)猜想并证明α与β之间的关系.
(1)∵α=110°,
∴∠2+∠4=180°-110°=70°,
∵∠ABC,∠ACB的平分线夹角为α,
∴∠1=∠2,∠3=∠4,
∴∠1+∠2+∠3+∠4=2(∠2+∠4)=2×70°=140°,
∴∠A=180°-2(∠2+∠4)=180°-140°=40°.
故答案为:40°.

(2)∵∠A=40°,
∴∠ABC+∠ACB=180°-∠A=180°-40°=140°,
∴∠DBC+∠ECB=360°-(∠ABC+∠ACB)=360°-140°=220°,
∵ABC的外角平分线与∠ACB的外角平分线的夹角为β,
∴∠6+∠7=
1
2
(∠DBC+∠ECB)=
1
2
×220°=110°,
∴β=180°-(∠6+∠7)=180°-110°=70°.
故答案为:70°.

(3)互补.
证明:如图所示:
∵OB,OC分别是∠ABC与∠ACB的平分线,
∴∠1=∠2,3=∠4,
∴α=180°-(∠2+∠4)=180°-
1
2
(∠ABC+∠ACB)①;
∵BP,CP是△ABC的外角平分线,
∴∠6+∠7=
1
2
[360°-(∠ABC+∠ACB)]=180°-
1
2
(∠ABC+∠ACB),
∴β=180°-(∠6+∠7)=180°-180°+
1
2
(∠ABC+∠ACB)=
1
2
(∠ABC+∠ACB)②,
①+②得,α+β=180°,
∴α与β互补.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:点D是△ABC的BC边的延长线上的一点,DF⊥AB交AB于F,交AC于E,∠A=30°,∠D=20°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,已知∠A=2∠B=3∠C,则三角形的形状是______三角形;(填锐角、直角或者钝角).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=30°,当∠A满足______时,△AOP为钝角三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,△ABC中,∠ABC与∠ACB的平分线交与点P,求证:∠P=90°+
1
2
∠A.
(2)如图2,在上题中,如果CP是∠ACD的平分线,BP是∠ABC的平分线,那么∠P与∠A有什么关系?并证明你的结论.
(3)如图3在上题中,如果BP、CP分别是∠CBD与∠BCE的平分线,那么∠P与∠A有什么关系?直接写出关系,不必证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC的三个内角大小分别为x,x,3x,则x的值为(  )
A.24B.30C.36D.40

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=30°,∠E=20°,求∠ACE和∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠A=40°,延长BC到D,作DF⊥AB,垂足为F,若∠D=43°,则∠ACB的度数为______.

查看答案和解析>>

同步练习册答案