精英家教网 > 初中数学 > 题目详情
(2006•达州)(古题今解)“今有圆材,埋在壁中,不知大小,以锯锯之,深-寸,锯道长一尺,问径几何”.这是《九章算术》中的问题,用数学语言可表述为:如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1寸,AB=10寸,则直径CD的长为( )

A.12.5寸
B.13寸
C.25寸
D.26寸
【答案】分析:根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可将圆的半径求出,进而可求出直径CD的长.
解答:解:∵弦AB⊥CD于点E,CE=1,AB=10,∴AE=5,OE=OA-1
在Rt△OAE中,OA2=AE2+OE2,即:OA2=(OA-1)2+52,解得:OA=13
∴直径CD=2OA=26寸
故选D.
点评:本题综合考查了垂径定理和勾股定理的性质和求法.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2006•达州)昨天清晨,张大伯将自己栽种的苦瓜担进城出售.为了方便,他带了一些零钱备用.张大伯先按市场价售出一些苦瓜后,到上午11时开始降价处理.已知他手中的钱数S(含备用零钱,单位:元)与售出的苦瓜数x(单位:千克)之间的关系如图所示.
(1)试问张大伯自带的备用零钱是多少?
(2)当张大伯按每千克2元将剩余苦瓜处理完时,他手中的钱(含备用零钱)是52元.求昨天张大伯一共卖了多少千克苦瓜?
(3)求出上午11时降价出售前,张大伯手中的钱数S(含备用零钱)与售出的苦瓜数x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2006年四川省达州市中考数学试卷(解析版) 题型:解答题

(2006•达州)昨天清晨,张大伯将自己栽种的苦瓜担进城出售.为了方便,他带了一些零钱备用.张大伯先按市场价售出一些苦瓜后,到上午11时开始降价处理.已知他手中的钱数S(含备用零钱,单位:元)与售出的苦瓜数x(单位:千克)之间的关系如图所示.
(1)试问张大伯自带的备用零钱是多少?
(2)当张大伯按每千克2元将剩余苦瓜处理完时,他手中的钱(含备用零钱)是52元.求昨天张大伯一共卖了多少千克苦瓜?
(3)求出上午11时降价出售前,张大伯手中的钱数S(含备用零钱)与售出的苦瓜数x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《相交线与平行线》(03)(解析版) 题型:解答题

(2006•达州)如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=5,AD=3,∠BAE=30°,求BF的长.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(10)(解析版) 题型:解答题

(2006•达州)如图,抛物线y=-x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=,O为坐标原点.
(1)求A、B、C三点的坐标;
(2)求证:∠ACB是直角;
(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:填空题

(2006•达州)如图正方形ABCD的边长为2cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA与OB.抛物线经过C、D两点,且关于OP对称,则图中阴影部分的面积之和为    cm2.(π取3.14,结果保留2个有效数字)

查看答案和解析>>

同步练习册答案