精英家教网 > 初中数学 > 题目详情
如图所示,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(2)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由.

【答案】分析:(1)作QF⊥AC于点F,先求BC,再用t表示QF,然后得出S的函数解析式;
(2)当DE∥QB时,得四边形QBED是直角梯形,由△APQ∽△ABC,由线段的对应比例关系求得t,由PQ∥BC,四边形QBED是直角梯形,△AQP∽△ABC,由线段的对应比例关系求t.
解答:解:(1)作QF⊥AC于点F,如图1,AQ=CP=t,
∴AP=3-t.
由△AQF∽△ABC,BC==4,


∴在点P从C向A运动的过程中,△APQ的面积S=(3-t)•
(2)能.
①当由△APQ∽△ABC,DE∥QB时,如图2.
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形,
此时∠AQP=90°.
由△APQ∽△ABC,得
.解得
②如图3,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABC,得

解得
点评:本题考查了相似三角形的判定定理,线段比的有关知识,利用二次函数的相关知识以及实际应用相结合,同时考生要注意巧妙利用辅助线的帮助解答,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图所示,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=55°,则∠DCB=
55
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,在Rt△ABC中,∠C=90°,∠A=30°.作AB的中垂线l分别交AB、AC及BC的延长线于点D、E、F,连接BE. 求证:EF=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,∠C=90°,AC=6,sinB=
3
5
,若以C为圆心,R为半径所得的圆与斜边AB只有一个公共点,则R的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在Rt△ABC中,AD平分∠BAC,交BC于D,CH⊥AB于H,交AD于F,DE⊥AB垂足为E,求证:四边形CFED是菱形.

查看答案和解析>>

同步练习册答案