精英家教网 > 初中数学 > 题目详情
19.如图,抛物线y=ax2+bx+c的图象经过点A(-2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、CD.
(1)求抛物线的函数表达式;
(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.

分析 (1)设抛物线的解析式为y=a(x-x1)(x-x2),再把点代入即可得出解析式;
(2)分两种情况:①当点E在直线CD的抛物线上方;②当点E在直线CD的抛物线下方;连接CE,过点E作EF⊥CD,再由三角函数得出点E的坐标.

解答 解:(1)∵抛物线y=ax2+bx+c的图象经过点A(-2,0),点B(4,0),点D(2,4),
∴设抛物线的解析式为y=a(x-x1)(x-x2),
∴y=a(x+2)(x-4),
∴-8a=4,
∴a=-$\frac{1}{2}$,
∴抛物线的解析式为y=-$\frac{1}{2}$(x+2)(x-4)=-$\frac{1}{2}$x2+x+4,
(2)①当点E在直线CD的抛物线上方,记E′,连接CE′,过点E′作E′F′⊥CD,垂足为F′,
由(1)得OC=4,
∵∠ACO=∠E′OF′,
∴tan∠ACO=tan∠E′CF′,
∴$\frac{AO}{CO}$=$\frac{E′F′}{CF′}$=$\frac{1}{2}$,
设线段E′F′=h,则CF′=2h,
∴点E′(2h,h+4),
∵点E′在抛物线上,
∴-$\frac{1}{2}$(2h)2+2h+4=h+4,
∴h1=0(舍去),h2=$\frac{1}{2}$,
∴E′(1,$\frac{9}{2}$);
②当点E在直线CD的抛物线下方;
同①的方法得,E(3,$\frac{5}{2}$),
综上,点E的坐标为(1,$\frac{9}{2}$),(3,$\frac{5}{2}$).

点评 本题考查了用待定系数法求二次函数的解析式,掌握二次函数的解析式三种不同的形式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,点O为直线AB上一点,过点O作射线OC,已知∠AOC不是直角,射线OD平分∠AOC,射线OE平分∠BOC,射线OF平分∠DOE.
(1)当∠AOC的度数在0°到90°之间时(不包含0°和90°),求∠FOB与∠DOC的度数和;
(2)若∠DOC=3∠COF,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在?ABCD中,点E是AB延长线上一点,连结DE与BC相交于点F,且$\frac{BF}{FC}$=$\frac{1}{2}$.
(1)求$\frac{BE}{AE}$的值.
(2)若△BEF的面积是1,求?ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)|-3$\frac{1}{2}$|×($\frac{1}{2}$-$\frac{1}{3}$)×$\frac{12}{7}$÷$\frac{3}{2}$×(-3)2÷(-3);
(2)3+50÷(-2)2×(-0.2)-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.定义一种新运算“⊙”:
1⊙3=1×4+3=7,
3⊙(-1)=3×4+(-1)=11,
(-5)⊙3=(-5)×4+3=-17,
(-6)⊙(-2)=(-6)×4+(-2)=-26

观察上述各式,解答如下问题:
(1)请你猜想:a⊙b=4a+b;
(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)
(3)若(2x+5)⊙(1-2x)=20,求x的值;
(4)若a⊙(-2b)=2016,求(a-b)⊙(2a+b)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图①,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B,C在AE的异侧,BD⊥AE于D,CE⊥AE于E.
(1)求证:BD=DE+CE.
(2)若直线AE旋转到图②与图③位置时,判断BD与DE,CE的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知数轴上点A表示的数为6,B是数轴上位于点A左侧一点,且AB=22.
(1)写出数轴上点B表示的数-16;
(2)点P、Q是该数轴上的两个动点,动点P从A点出发,以每秒5个单位的长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.
①用含t的代数式表示线段PA和BQ的长度,AP=5t;BQ=3t.
②若点P、Q同时出发,t为多少秒时,P、Q之间的距离恰好等于2?
③当t=6时,AP=30;若M为AP的中点,N为BP的中点,在备用图中画出P、M、N三点,并求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某乡白梨的包装质量为每箱10千克,现抽取8箱样品进行检测,结果称重如下(单位:千克):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2,为了求得8箱样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.
 原质量(千克) 10.2 9.99.89.610.19.710.2
 与基准数的差距(千克)       
(1)你认为选取的一个恰当的基准数为10千克;
(2)根据你选取的基准数,用正、负数填写上表;
(3)这8箱水果的总质量是多少?

查看答案和解析>>

同步练习册答案